Timeline of Workflow languages

- Bedford Lab Meeting-

Jennifer Chang, Ph.D.
Bioinformatic Analyst 111

Fred Hutchinson Cancer Center

January 24, 2023 Jennifer Chang 1/34

R
Some terms

e Programming language: bash, R, Python, Perl, C++, Java, JavaScript, Rust
e Workflow language: Snakemake, Nextflow, CWL, WDL
e Runtime:

o Dependencies - Docker, Singularity, Conda, ambient installs

o Specialized hardware - HPC (Slurm or SGE job schedulers)

o Cloud - AWS, Google Cloud Compute, Microsoft Azure

e Possible comparisons:
O syntax
o features
m data types (inputs/outputs)
m control structures
m parallelism
u

modularization

January 24, 2023 Jennifer Chang 2/34

E——
Why use a workflow language?

Step by step

For computational biologists, pipelines are methods; much like wet-lab protocols, they must
be documented. But pipelines often comprise dozens of steps, so it’s not trivial to do.
Bioinformatician Titus Brown at the University of California, Davis, calculated that passing six
samples through his de novo transcriptome assembly pipeline — involving data download,
quality control, normalization, assembly, annotation and analysis — requires “well over 100
steps”. Researchers must document precisely how each step is performed if they have any
hope of reproducing them at a later date.

Typically, researchers codify workflows using general scripting languages such as Python or
Bash. But these often lack the necessary flexibility. Workflows can involve hundreds to
thousands of data files; a pipeline must be able to monitor their progress and exit gracefully if
any step fails. And pipelines must be smart enough to work out which tasks need to be re-
executed and which do not.

Bioinformatician Davis McCarthy at St Vincent’s Institute of Medical Research in Fitzroy,
Australia, says Python and R were more than enough for the relatively simple workflows he
used as a PhD student. But today, McCarthy, who works with single-cell data sets, processes
orders of magnitude more samples, some of which inevitably fail owing to problems such as
network issues and memory shortages. “It was just way beyond my capabilities to figure that
out from scratch for an analysis of this size,” he says. He adopted the command-line-driven
Snakemake, instead (see ‘Anatomy of a workflow’).

Perkel 2019 "Workflow systems turn raw data into
scientific knowledge"

January 24, 2023

Jennifer Chang

The early days

Before my involvement with Nextflow, I was a research engineer at the Cedric Notredame Lab
for Comparative Bioinformatics. My job at the time was to help researchers run their
workloads more efficiently on in-house computing clusters. While tools existed for managing
bioinformatics workflows, most of our pipelines were developed in house using Bash and other
scripting languages. There were challenges with this approach:

e Scripts were complex and usually understood only by their authors, making enhancing and
maintaining workflows challenging.

e Workflows were buggy and error-prone: imagine kicking off a long-running pipeline,
launching thousands of jobs, only to have it fail after 10 hours of execution and needing to
restart it from scratch.

e When workflows ran, it was hard to track progress. Without monitoring tools, we found
ourselves constantly using the Linux command line, 'tailing' files and 'grepping' jobs to get a
sense of where we were.

e Finally, the workflows were tightly tied to the compute environments. Even small changes to
the environment could cause pipelines to break.

In other words, early pipeline processing was an utter mess. Installing a pipeline could take
weeks of effort, requiring the configuration of obscure pieces of software, the use of bizarre
programming languages and compilers, and troubleshooting missing libraries and components.
One needed to know arcane environment variables and command line options passed among
PhD students as a matter of ritual.

Di Tommaso, 2021 "The story of Nextflow: Building a
modern pipeline orchestrator"

3/34

https://elifesciences.org/labs/d193babe/the-story-of-nextflow-building-a-modern-pipeline-orchestrator
https://elifesciences.org/labs/d193babe/the-story-of-nextflow-building-a-modern-pipeline-orchestrator
https://www.nature.com/articles/d41586-019-02619-z
https://www.nature.com/articles/d41586-019-02619-z

FALCON + Unzip

VGP assembly standard pipeline (v1.0 ~ v1.6)

+ Arrov{

purge haplotigs (v1.5)

purge_dups (v1.6)

P

Alternate combined: g2

4

[purge_dups (v1.6)]

(Rhie et al, 2021, Extended Data Fig 3)

January 24, 2023

scaff10x (2 rounds)
' Solve hybrid scaffold

Solve pipeline

Salsa2

83 + q2 + mitoVGP (v1.6)

Combined. ¢

pri.cur Curation Polished
alt.cur scaffolds: 11~3

Jennifer Chang

111 Arrow f

12~3: Longranger + Freebayes, 2 rounds

YWEY!

a VGP assembly standard pipeline (v1.0 ~ v1.6)

FALCON

PacBio CLR

CANU
™ primary_assembly.fasta,

{

.
‘Arrow Polish

(with Werfin)

[

rnate combined: G2

primary assembly
_ctg fasta

‘i primary 1 }_‘ puge_oups |-

purge_dups (v1.6)

“

(R etal, 2021, Extended Data Fig 3)

12~3: Longranger + Freebayes, 2 rounds

v

FALCON-Unzip

]

alternate assembly
ol fa

alternate (c2)
tg fasta

purge_dups

'

haplotig_alt
h_ctg_to_discard fasta

haplotig_prime (q2)
h_ctg_combined fasta

haplotigs
cns_h_cig.fasta

spit_fa

Polishing Data
Shing/{R1,R2).

BUSCOS
> (quality check)

Manual
Scaffolding
Step

primary (s1)
p_ctg_scaffolded.fasta:

cat
(p_ a_ m_prefixes in |

fasta headers)

{with optional merfin (Formenti et al, 2021))

combined(s2)
p_h_mt_ctgfasta

‘Artow Polish

(with Merin)

only without
unzip

FreeBayes | —»

‘assembiy file " PacBioCLR
{_assemblyfasta *subreads barm

!

minimap2 create windows
-xmap-pb by contig

(]
mapping.pa.gz

phestat

windows. ot

pi_assemblyspit] [

pesat | [_Pebasecos |

minimap2 -xasms.
-DF

¥

splitselt.pat.gz

https://github.com/isu
gifNF/polishCLR/wiki

f—l—i

calcuts

v
p_cutoffs meryl count

purge_dups

¥

get_seqs

assembiy file PacBioCLR i meryl database |
© assemblyfasta *subreads bam illumina meryl
pbmm2 index

assemblyfasta,
assembly fasta*

(index fles)

pbmm2 align

i

alignment bam

gepp arow

!

Variants | SNPs
windowO1.vef
windowb2.vef

| merfin -polish

[

] [

purged]

January 24, 2023

L]

beftools view

Jennifer Chang

index, consensus

new polished assembly file
assembly.fasta

]

meryl histogram
(cakulate peak)

]

convertbztogz | w| HRLR2)Mastagz

menyl count

v

menyl union

v

meryl database
illumina.meryl

calculate peak
meryl histogram + awk

MerquryQy
Rnie et 3,

bbstat

assembly file

samtools faidx commands

FreeBayes

final polished assembly

Primary Assembly
p_clg fasta:

haplotigs
h_ctg fasta

mitochondria
mi_clg_discard fasta

S

peak ixt

merqury.qv
(value, try to get at

least 40)

file

meryl count

-assemmy menyl

cftor
S —
index, o

assemby
assemblyfasta

fiiimina Paired
End Reads

{ ' meryl database :

illumina meryl

1 H

create windows.
o

bwa-mem2 index

'

assembly.fasta,
assembly fasta*

windows.ba
(index files)

bwa-mem2 align

-alu_mmem bam

FreeBayes

Variants SNPs
windowO1vef
windowo2.vef

ols view

onsensus

new polished assembly file
assemblyfasta

meryl histogram
(calculate peak)

'

https://github.com/isugifNF/polishCLR/wiki
https://github.com/isugifNF/polishCLR/wiki

E——
Why use a workflow language?

Step by step The early days

For computational biologists, pipelines are methods; much like wet-lab protocols, they must Before my involvement with Nextflow, I was a research engineer at the Cedric Notredame Lab
be documented. But pipelines often comprise dozens of steps, so it’s not trivial to do. for Comparative Bioinformatics. My job at the time was to help researchers run their
Bioinformatician Titus Brown at the University of California, Davis, calculated that passing six workloads more efficiently on in-house computing clusters. While tools existed for managing

bioinformatics workflows, most of our pipelines were developed in house using Bash and other

samples through his de novo transcriptome assembly pipeline — involving data download,
quality control, nor

s eaes Tha common aim'is to'make computational methods senancingan

hope of reproducin

manearte raproducible, portable, maintainable, and shareable e

Bash. But these ofte 1 and needing to

thousands of data fiies, a PIPEHIIE HIUSL UE dUIE LU HIIUITHLOL UICH PIUZIESS dllU EXILgldLeiuny 1 restart it from scratch.

any step fails. And pipelines must be smart enough to work out which tasks need to be re-

executed and which do not. o When workflows ran, it was hard to track progress. Without monitoring tools, we found
ourselves constantly using the Linux command line, 'tailing' files and 'grepping' jobs to get a

Bioinformatician Davis McCarthy at St Vincent’s Institute of Medical Research in Fitzroy, sense of where we were.

Australia, says Python and R were more than enough for the relatively simple workflows he

used as a PhD student. But today, McCarthy, who works with single-cell data sets, processes o Finally, the workflows were tightly tied to the compute environments. Even small changes to

orders of magnitude more samples, some of which inevitably fail owing to problems such as the environment could cause pipelines to break.

network issues and memory shortages. “It was just way beyond my capabilities to figure that
out from scratch for an analysis of this size,” he says. He adopted the command-line-driven
Snakemake, instead (see ‘Anatomy of a workflow’).

In other words, early pipeline processing was an utter mess. Installing a pipeline could take
weeks of effort, requiring the configuration of obscure pieces of software, the use of bizarre
programming languages and compilers, and troubleshooting missing libraries and components.
One needed to know arcane environment variables and command line options passed among
PhD students as a matter of ritual.

Perkel 2019 "Workflow systems turn raw data into Di Tommaso, 2021 "The story of Nextflow: Building a
scientific knowledge" modern pipeline orchestrator"

January 24, 2023 Jennifer Chang 6/34

https://elifesciences.org/labs/d193babe/the-story-of-nextflow-building-a-modern-pipeline-orchestrator
https://elifesciences.org/labs/d193babe/the-story-of-nextflow-building-a-modern-pipeline-orchestrator
https://www.nature.com/articles/d41586-019-02619-z
https://www.nature.com/articles/d41586-019-02619-z

E——
Agenda

e Makefiles
e Snakemake
e Nextflow

e (CWL and WDL

January 24, 2023 Jennifer Chang 7/34

E——
Agenda

Makefiles - pubmed check (3) Snakemake - pubmed_check (93)

Papers in Snakemake_pm_papers.tsv'; n=92

Papers in Makefile_pm_papers.tsv'; n=10

o 5 o5 25
20
20 20
15 - 18
o
Q 5
Q 15
© Q
by 5
510 1 1 1 1 1 1 =
I3 Es)
2 g 10
g = |
= =z
05 6
5
3
1 1 l 1
00 0 [[[
A P DI PP L PO O RXNLL0 N0 0,0 9.9 O N Q@ & > \J o Q J 2 Q = a9, Y
D P OO TR S XX/ M N A0 AV AP N N N N N N N NS N QO qQ Q Q£
FFEFEEFT TS T EE T T ES S S S S S S T A A S
Year of Publication Year of Publication

Nextflow - pubmed_check (92) CWL and WDL - "Dockstore" pubmed_check (7)

Papers in Nextflow_pm_papers.tsv'; n=91 Papers in Dockstore_pm_papers.tsv'; n=6
31 31 20 2 2
301
15
§ 201 g
3 o
S 17 g
IS 510 1 1
2 z
E £
= = |
Z 104 Z
6 05
5
1 .
ol —
0.0
& @ 2 > 0 g
o »& r& 5 B B S s° s & KA s

Year of Publication Year of Publication

January 24, 2023 Jennifer Chang 8/34

https://j23414.github.io/compare_workflows/Makefile_pm_qc.html
https://j23414.github.io/compare_workflows/Snakemake_pm_qc.html
https://j23414.github.io/compare_workflows/Nextflow_pm_qc.html
https://j23414.github.io/compare_workflows/Dockstore_pm_qc.html

E——
Agenda

e Makefiles

e Snakemake

e Nextflow _
#! lusribin/env bash
e CWL and WDL
sleep 5
augur filter Alice echo "Alice" > Alice_baton.txt
y Y sleep 5
) cat Alice_baton.txt > Bob_baton.txt
augur align Bob echo "Bob passes the baton" >> Bob_baton.txt
Y y sleep 5
cat Bob_baton.txt > Cathy baton.txt
augur tree Cathy echo "Cathy passes the baton" >> Cathy_baton. txt
A
augur refine
¥
augur export
January 24, 2023 Jennifer Chang 9/34

-
1976 - Makefiles

Make originated with a visit from Steve Johnson (author of yacc, etc.), storming into my office, cursing the Fates that had caused him to
waste a morning debugging a correct program (bug had been fixed, file hadn't been compiled, cc *.o was therefore unaffected). As |
had spent a part of the previous evening coping with the same disaster on a project | was working on, the idea of a tool to solve it came
up. It began with an elaborate idea of a dependency analyzer, boiled down to something much simpler, and turned into Make that
weekend. Use of tools that were still wet was part of the culture. Makefiles were text files, not magically encoded binaries, because that
was the Unix ethos: printable, debuggable, understandable stuff.

— Stuart Feldman, The Art of Unix Programming, Eric S. Raymond 2003

Source Files Object Files Executable o Designed by Stuart Feldman and first

main.h 4@ | SomeProgram.exe released Aprﬂ 1976

main.cpp e Makefiles defined rules

Al e target: name of the file generated,

FileReaderWriter.cpp

usually object files or executables
Aloorthm.n oo J—— e dependency: input file that is used to

Algorithm1.cpp

create a target

Algorithmz.h > Algorithm2.0 — e command: the action that takes

Algorithm2.cpp

T

dependencies to create the target

January 24, 2023 Jennifer Chang 10/ 34

-
1976 - Makefiles

#! lusrl/bin/env bash Makefile

all : Cathy_baton.txt
cat Cathy_baton.txt

sleep 5

echo "Alice” > Alice_baton.txt Writing a set of Makefile Rules

sleep 5 target : dependency Alice_baton.txt :

cat Alice_baton.txt > Bob_baton.txt

echo "Bob passes the baton” >> Bob_baton.txt command sleep 5

echo "Alice" > Alice_baton.txt

sleep 5
cat Bob_baton.txt > Cathy_baton.txt)
echo "Cathy passes the baton" >> Cathy_baton.txt Bob_baton.txt : Alice_baton.txt

sleep 5
cat Alice_baton.txt > Bob_baton.txt
echo "Bob passes the baton" >> Bob_baton.txt

Cathy_baton.txt : Bob_baton.txt

sleep 5
cat Bob_baton.txt > Cathy_baton.txt
echo "Cathy passes the baton" >> Cathy_baton.txt

January 24, 2023 Jennifer Chang 11/34

-
1976 - Makefiles

#! lusr/ibin/env bash

sleep 5
e S AT Writing a set of Makefile Rules
sleep 5 target : dependency

cat Alice_baton.txt > Bob_baton.txt

echo "Bob passes the baton" >> Bob_baton.txt command

sleep 5
cat Bob_baton.txt > Cathy_baton.txt
echo "Cathy passes the baton" >> Cathy_baton.txt

e C(Caching is file-based —tracks the existence of files
(dependencies and targets)
e Use rules to pull a final "target"

e To be run locally

Makefile
all : Cathy_baton.txt

cat Cathy_baton.txt
Alice_baton.txt :

sleep 5
echo "Alice" > Alice_baton.txt

Bob_baton.txt : Alice_baton.txt

sleep 5
cat Alice_baton.txt > Bob_baton.txt
echo "Bob passes the baton" >> Bob_baton.txt

Cathy_baton.txt : Bob_baton.txt

sleep 5
cat Bob_baton.txt > Cathy_baton.txt
echo "Cathy passes the baton" >> Cathy_baton.txt

e PubMed: https://pubmed.ncbi.nlm.nih.gov/?term=makefile&sort=date

e Example: mgalardini/reads2snps/Makefile

pubmed check

January 24, 2023 Jennifer Chang

12 /34

https://pubmed.ncbi.nlm.nih.gov/?term=makefile&sort=date
https://github.com/mgalardini/reads2snps/blob/master/Makefile
https://j23414.github.io/compare_workflows/Makefile_pm_qc.html

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command
e Snakemake
e Nextflow

e (CWL and WDL

January 24, 2023 Jennifer Chang 13 /34

-
2012 Snakemake

Makefile Snakemake
all : Cathy_baton.txt rule all :
input: "Cathy_baton.txt "
e) Writing a set of Snakemake Rules p -
Alice_baton.txt : rule NAME: rule Alice:
input: dependency files output: "Alice_baton.txt"
sleep 5 output: target files shell:
echo "Alice" > Alice_baton.txt shell:
won sleep 5
command echo 'Alice passes the baton' >> {output}

Bob_baton.txt : Alice_baton.txt

sleep 5 . rule Bob:
cat Alice_baton.txt > Bob_baton.txt Isoc"_pt' input: "Alice_baton.txt"
echo "Bob passes the baton" >> Bob_baton.txt g9: output: "Bob_baton.txt
params: shell:
thread:
sleep 5
Cathy_baton.txt : Bob_baton.txt cat {input} > {output}

echo 'Bob passes the baton' >> {output}

sleep5 L
cat Bob_baton.txt > Cathy_baton.txt

echo "Cathy passes the baton" >> Cathy_baton.txt
rule Cathy:

input: "Bob_baton.txt"
output: "Cathy_baton.txt"
shell:

sleep 5
cat {input} > {output}
echo 'Cathy passes the baton' >> {output}

January 24, 2023 Jennifer Chang 14 /34

-
2012 - Snakemake

Listing 1. Example Snakefile for mapping paired-end reads with BWA.

e Designed by Johannes Koster and team (1) SAMPLES = "100 101 102 103" .split ()
. . (2) REF = "hgl9.fa"
and first published in 2012 B wadeaniis
(4) input: "{sample}.coverage.pdf".format (sample = sample)

e Snakemake was designed to be a readable

(5) for sample in SAMPLES
(6) rule fastqg to_sai:

python-based workflow definition

7 input: ref = REF, reads = "{sample}.{group}.fastqg"
(8) output: temp (" {sample} . {group}.sai")

language and powerful execution

9 shell: "bwa aln {input.ref)} {input.reads} > {output}"

enVerIlment (10) rule sai_to_bam:
(11) input: REF, "{sample}.l.sai", "{sample}.2.sai",
e first system to support the use of (2 =eeplelit-fantyny feample) 2 tasty;
(13) output: protected("{sample}.bam")
automatlcally ll’lfel‘red multlple named (14) shell: "bwa sampe {input} | samtools view -Sbh - > {output}"
(15) rule remove_duplicates:
widcards (or variables) 1o depasi Eelar. bad®
(177 output: "{sample}.nodup.bam"
e newer features: module, paramspace (18) ahalls *samtools mmdup {input} {output)®
’ ’ (19) rule plot_coverage_histogram:
piped output for streamed output, job () dmputs"feanple) modupsbent
(21) output: hist = "{sample}.coverage.pdf"
grouping (22) run:
(23) frommatplotlib.pyplot import hist, savefig
e https://github.com/nextstrain/zika/blob/re @9 hist(listmap(int,
(25) shell ("samtools mpileup {input} | cut -f4",
factor/modularize/Snakefile (26) iterable=True))))
27 savefig (output.hist)

Koster & Rahmann, 2012; Molder et al, 2021
15/ 34

January 24, 2023 Jennifer Chang

https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#modules
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#parameter-space-exploration
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#piped-output
https://snakemake.readthedocs.io/en/stable/executing/grouping.html
https://snakemake.readthedocs.io/en/stable/executing/grouping.html
https://github.com/nextstrain/zika/blob/refactor/modularize/Snakefile
https://github.com/nextstrain/zika/blob/refactor/modularize/Snakefile
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.12688/f1000research.29032.1

-
2012 Snakemake

Makefile Snakemake
all : Cathy_baton.txt rule all :
input: "Cathy_baton.txt "
ey Writing a set of Snakemake Rules p i
Alice_baton.txt : rule NAME: rule Alice:
input: dependency files output: "Alice_baton.txt"
sleep 5 output: target files shell:
echo "Alice" > Alice_baton.txt shell:
won sleep 5
command echo 'Alice passes the baton' >> {output}

Bob_baton.txt : Alice_baton.txt

sleep 5 script: e BOb:.. ; "
cat Alice_baton.txt > Bob_baton.txt ” pt: input: “Alice_baton.txt*
echo "Bob passes the baton" >> Bob_baton.txt pagr-ams: OESIJIL'JU Bob_baton.txt
thread: e ¥
sleep 5
Cathy_baton.txt : Bob_baton.txt cat {input} > {output}
echo 'Bob passes the baton' >> {output}
sleep5 L
cat Bob_baton.txt > Cathy_baton.txt
echo "Cathy passes the baton" >> Cathy_baton.txt
rule Cathy:
input: "Bob_baton.txt"
output: "Cathy_baton.txt"
shell:
e file-based caching, but can have temp/pipe intermediates —
cat {input} > {output}
echo 'Cathy passes the baton' >> {output}
® passin values via params
e pulls a final "target"
e Command using {input} {output} variables pubmed check

Jaruary 24, 2023 Jennifer Chang

https://j23414.github.io/compare_workflows/Snakemake_pm_qc.html
https://github.com/nextstrain/ncov-ingest/blob/master/workflow/snakemake_rules/curate.smk
https://github.com/nextstrain/ncov-ingest/blob/master/workflow/snakemake_rules/curate.smk
https://pubmed.ncbi.nlm.nih.gov/?term=snakemake&sort=date

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command
e Snakemake - 2012 published, rule, wildcards, params, modules
e Nextflow

e (CWL and WDL

January 24, 2023 Jennifer Chang 17 /34

2013 Nextflow

Snakemake

rule all :
input: "Cathy_baton.txt "

rule Alice:
output: "Alice_baton.txt"
shell:

sleep 5
echo 'Alice passes the baton' >> {output}

rule Bob:
input: "Alice_baton.txt"
output: "Bob_baton.txt"
shell:

sleep 5
cat {input} > {output}
echo 'Bob passes the baton' >> {output}

rule Cathy:
input: "Bob_baton.txt"
output: "Cathy_baton.txt"
shell:

sleep 5
cat {input} > {output}
echo 'Cathy passes the baton' >> {output}

Writing a set of Nextflow Processes

process NAME {
input: tuple, path, value
output: tuple, path, value
shell:

command

}

workflow WK_NAME {
Name()
| view

}

Nextflow

workflow all {
Alice
| Bob
| Cathy
| view

}

process Alice:
output: path("Alice_baton.txt")
shell:

"

sleep 5

echo 'Alice passes the baton' >> "Alice_baton.txt"

o

process Bob:
input: path(inile)
output: path("Bob_baton.txt")
shell:

sleep 5
cat $infile > Bob_baton.txt

echo 'Bob passes the baton' >> "Bob_baton.txt"

process Cathy:
input: path(infile)
output: path("Cathy_baton.txt")
shell:

mn

sleep 5

cat ${infile} > "Cathy_baton.txt"
echo 'Cathy passes the baton' >> "Cathy_baton.txt"

i

nextflow.config

process {
publishDir "results", mode "copy"

}

profile {

-
2013 - Nextflow

e Designed by Paolo Di Tommaso and first released in March 2013

e Nextflow designed with the goal that researchers can continue to use their
favorite programming language and tools, and swap out the compute environment

e DataFlow is a programming model that allows the definition of tasks that execute
in parallel in a declarative manner. Imagine tasks in Nextflow workflow as cells
in a spreadsheet. When a cell is modified the change is propagated automatically

to all dependent cells.

Di Tommaso, 2021 "The story of Nextflow: Building a modern pipeline orchestrator"

January 24, 2023 Jennifer Chang 19/34

2013 Nextflow

Snakemake Nextflow
rule all : workflow all {
input: "Cathy_baton.txt " = Alice
Writing a set of Nextflow Processes | Bob
: | Cathy
rule Alice: process NAME { | view
output: "Alice_baton.txt" input: tuple, path, value }
shell: output: tuple, path, value
shell:
sleep 5 process Alice:
echo 'Alice passes the baton' >> {output} command output: path("Alice_baton.txt")
...... shell:
sleep 5
rule Bob: echo 'Alice passes the baton' >> "Alice_baton.txt"
input: "Alice_baton.txt" }
output: "Bob_baton.txt"
shell: workflow WK_NAME {
...... Name() process Bob:
sleep 5 | view input: path(inile)
cat {input} > {output} } output: path("Bob_baton.txt")
echo 'Bob passes the baton' >> {output} shell:
sleep 5
cat $infile > Bob_baton.txt
rule Cathy: echo 'Bob passes the baton' >> "Bob_baton.txt"
input: "Bob_baton.txt*
output: "Cathy_baton.txt"
She”.',.,,. process Cathy:
sleep 5 input: path(infile)
cat {input} > {output} output: path("Cathy_baton.txt")
echo 'Cathy passes the baton' >> {output} shell:

mn
......

sleep 5
cat ${infile} > "Cathy_baton.txt"
echo 'Cathy passes the baton' >> "Cathy_baton.txt"

e Input accepts both files and paths

e Instead of wiring input and outputs within each rule, nextiow.conig

process {

connect rule (process) in a workflow section PbNSHEIR “FRsile; e tEopy"

® 1<olated mine 1n a work directorv profile{

https://github.com/nf-core/rnaseq
https://j23414.github.io/compare_workflows/Nextflow_pm_qc.html

2013 Nextflow - isolated folders

isolated runs in a work directory Nextflow

warmvl flaas AT

W % tree —-a work

.command.begin

.command.err

.command.log

.command.out

.command.run

.command.sh

.exitcode

-> /Users/jchang3/github/j23414/compare_workflows/2017_Nextflow/work/c1l/dbc37a7011a9b2c3120b1f788e1375/Cathy_baton.txt

(TTTTTTT

Dave_baton.txt

bn’ >> "Alice_baton.txt"
.command.begin
.command.err
.command.log
.command.out
.command.run
.command.sh
.exitcode
t —=> /Users/jchang3/github/j23414/compare_workflows/2017_Nextflow/work/1b/415d18adab625f579c622db59e6184/Dave_baton. txt

Eve_baton. txt

[2017 _Nextflow % nextflow run next_baton.nf
.command.begin NEXTFLOW ~ version 22.10.0

-command.err Launching “next_baton.nf® [happy_roentgen] DSL2 - revision: 4elféf8ca7
.command.log

eI Pipeline = Alice -> Bob -> Cathy -> Dave -> Eve
.command.run

.command.sh where each person runs 5 seconds to pass the baton to next person
.exitcode

Alice_baton.txt executor > 1local (5)

[a0/6d6277] process > Alice [100%] 1 of

x [ed/a34e08] process > Bob [100%] 1 of

e [c1/dbc37al process > Cathy [100%] 1 of

> al
1

[TTTTTT]

. d.
_zzm::d.;:; [1b/415d18] process > Dave [100%] 1 of

.command.out [8d/d951c3] process > Eve [100%] 1 of
.command.run /Users/jchang3/github/j23414/compare_workflows/2017_Nextflow/work/8d/d951c35cc8ebede31c2f5ae4c7aec5/Eve_baton.txt
.command.sh
.exitcode

t t —=> /Users/jchang3/github/j23414/compare_workflows/2017_Nextflow/work/ed/a34e@8e4ecf606e7730ba5518dd62c/Bob_baton. txt
Cathy_baton.txt

[TTTTTTT

.command.begin
.command.err
.command.log
.command.out
.command.run
.command.sh
.exitcode

[TTTTTTTI

t -=> /Users/jchang3/github/j23414/compare_workflows/2017_Nextflow/work/a@/6d627760375285d1fb919c2213567c/Alice_baton.txt

Bakh hatan +vd

https://carpentries-incubator.github.io/workflows-nextflow/13-workflow_checkpoint_caching/index.html

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command

e Snakemake - 2012 published, rule, wildcards, params, modules

e Nextflow - 2013 (?) 2017 published, DataFlow, channel, isolated work dir
e CWL and WDL

January 24, 2023 Jennifer Chang 22 /34

IEEE————————
2014 - CWL

® cat.cwl-
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/cat.
cwl

e wc.cwl-

https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/wc.
cwl

e CWL originated from discussions between Peter Amstutz, John Chilton,

Nebojsa Tijanic, and Michael R. Crusoe

"The Common Workflow Languagen (CWL) is a language specification designed by the
bioinformatics community to unify the style, principles and standards of coding pipelines, in
a way that is agnostic of the hardware. It prioritizes reproducibility and portability of
workflows and hence requires explicit/pedantic parameters definitions, making it very
verbose. In contrast, Workflow Description Language (WDL) is a language specification that
emphasizes human readability of the code and an easy learning curve, at the cost of being
restrictive in its expressiveness (fig Supplementary 4)."
https://www.nature.com/articles/s41598-021-99288-8

OpenWDL was developed at the broad institute

WIMS First commit Contributors Closed Open License
Swift-t 2011-05-11 16 109 81 apache-2.0
Nextflow 2013-03-22 81 1770 159 apache-2.0
CWL 2014-09-25 62 667 249 apache-2.0
WDL 2012-08-01 44 376 50 bsd-3-clause

] Table 3. GitHub activities from each WIMS (March 4th, 2021). Contributors is the number of contributors -

https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/cat.cwl
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/cat.cwl
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/wc.cwl
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/basic/wc.cwl
https://www.nature.com/articles/s41598-021-99288-8#MOESM1
https://www.nature.com/articles/s41598-021-99288-8

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command

e Snakemake - 2012 published, rule, wildcards, params, modules

e Nextflow - 2013 (?) 2017 published, DataFlow, channel, isolated work dir
e CWL (verbose) and WDL

January 24, 2023 Jennifer Chang 24 /34

—

Nextflow WDL
workflow all { workflow all {
Alice - call Alice
| Bob Writing a set of WDL Tasks call Bob { input: infile=Alice.outfile }
| Cathy call Cathy { input: infile=Bob.outfile }
| view task NAME { output {
} input { File final_out = Cathy.outfile
File infile }
. # String, Int, Double, Boolean, Array, Object
process Alice: }
output: path("Alice_baton.txt") command <<< task Alice {
She",;,,,, command command <<<
sleep 5 sleep 5
echo 'Alice passes the baton' >> "Alice_baton.txt" echo 'Alice passes the baton' >> "Alice_baton.txt"
. .
output { output {
process Bob: N File outfile = "outfile.txt" File outfile = "Alice_baton.txt"
input: path(inile) } }
output: path("Bob_baton.txt") runtime { runtime {
shellli"“ docker: "ubuntu" docker: "ubuntu”
sleep 5 } } }
cat $infile > Bob_baton.txt } §
echo 'Bob passes the baton' >> "Bob_baton.txt" workflow WK_NAME {
mn input{ - task Bob{
File textfile input{
process Cathy: - — } File infile
e [_aath(m"flle) " input: infile=textfile command <<<
output: path("Cathy_baton.txt") sleep 5
She".:..." output { cat {input} > {output}
sleep 5 Eile final out = NAME.outfile echo 'Bob passes the baton' >> "Bob_baton.txt"
cat ${infile} > "Cathy_baton.txt" } >>>
echo 'Cathy passes the baton' >> "Cathy_baton.txt" } output {
File outfile = "Bob_baton.txt"
}
runtime {
docker: "ubuntu”
nextflow.config }
}
process {
publishDir "results", mode "copy" » hy {
} task Cathy
input {
profile { File infile
standard {} }
docker {} command <<<
singularity {} sleep 5)
aws {} cat ${input_file} > "Cathy_baton.txt"
conda {} echo 'Cathy passes the baton' >> "Cathy_baton.txt"
slurm {} Z:put (
}
File outfile = "Bob_baton.txt"
runtime {
docker: "ubuntu”
}

}

Compute isolation - File localization

F=] script

cd /cromwell-executions/Al1l_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution

tmpDir=$(mkdir -p "/cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/tmp.55e4ea%" && echo "/cromwell-executions/Al1l_Workflow/
4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/tmp.55e4ea%b")

chmod 777 "$tmpDir"

export _JAVA_OPTIONS=-Djava.io.tmpdir="$tmpDir"

export TMPDIR="$tmpDir"

export HOME="$HOME"

(

cd /cromwell-executions/Al1l_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution

)

out4de95676="${tmpDir}/out.$$" errd4de95676="${tmpDir}/err.$s$"

mkfifo "$out4de95676" "$errdde95676"

trap 'rm "$out4de95676" "$errd4de95676""' EXIT

tee '/cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution/stdout' < "$outd4de95676" &

tee '/cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution/stderr' < "$err4de95676" >&2 &
(

cd /cromwell-executions/Al1l_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution

#! /usr/bin/env bas

sleep 5

cat /cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/inputs/1050289724/Alice_baton.txt > Bob_baton.txt
echo 'Bob passes baton' >> Bob_baton.txt

) > "joutddedso/o" 2> "$errddedso/o

echo $? > /cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution/rc.tmp

(

A (a .file in every empty director o facilitate directory delocalization on yud
cd /cromwell-executions/Al1l_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution
find . -type d -exec sh —c '[-z "$(ls —-A '"'"'{}'"'"")"] & touch '"'"'{}'"'"'/.file' \;

)

(

cd /cromwell-executions/All_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution

sync

)
mv /cromwell-executions/Al1l_Workflow/4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution/rc.tmp /cromwell-executions/Al1l_Workflow/
4de95676-46bf-4181-8452-ece5ff3bab29/call-Bob/execution/rc

January 24, 2023 Jennifer Chang 26 /34
=

WDL

Nextflow
workflow all { workflow all {
Alice - call Alice
| Bob Writing a set of WDL Tasks call Bob { input: infile=Alice.outfile }
| Cathy call Cathy { input: infile=Bob.outfile }
| view task NAME { output {
} input { File final_out = Cathy.outfile
File infile }
. # String, Int, Double, Boolean, Array, Object
process Alice: }
O'l;lt[.l)lljlt path("Alice_baton.txt") command <<< task Alice {
She command command <<<
sleep 5 sleep 5
echo 'Alice passes the baton' >> "Alice_baton.txt" echo 'Alice passes the baton' >> "Alice_baton.txt"
- >>> >>>
output { output {
process Bob: File outfile = "outfile.txt" File outfile = "Alice_baton.txt"
input: path(inile) } }
output: path("Bob_baton.txt") runtime { runtime {
shell: docker: "ubuntu" docker: "ubuntu”
sleep 5 } } }
cat $infile > Bob_baton.txt }
echo 'Bob passes the baton' >> "Bob_baton.txt" workflow WK_NAME {
input { - tagk Bob {
File textfile input{
process Cathy: } 1| NAME { } File wfile
i : i cal
e Fath(mfﬂe) 4 input: infile=textfile command <<<
output: path("Cathy_baton.txt") } P sleep 5
She",:,,,,, output { cat {input} > {output}
sleep 5 Eile final out = NAME.outfile echo 'Bob passes the baton' >> "Bob_baton.txt"
cat ${infile} > "Cathy_baton.txt" } >>>
echo 'Cathy passes the baton' >> "Cathy_baton.txt" } output {
File outfile = "Bob_baton.txt"
}
runtime {
docker: "ubuntu”
nextflow.config }
}
process {
ublishDir "results", mode "copy" .
3 e real-world example: task Cathy {
. input {
profile { TheiaCov_Augur_ Run File infile
t }
it Terra Dashboard T—
singulari sleep 5
aw.g o v remote m Od u l es cat ${input_file} > "Cathy_baton.txt"
conda {} echo 'Cathy passes the baton' >> "Cathy_baton.txt"
slurm {} Z:t>put (
}
File outfile = "Bob_baton.txt"
runtime {
docker: "ubuntu”
}

}

https://dockstore.org/workflows/github.com/theiagen/public_health_viral_genomics/TheiaCoV_Augur_Run:smw-mincov-dev?tab=files
https://app.terra.bio/#workspaces/Nextstrain/Development
https://github.com/j23414/wdl_pathogen_build/blob/main/workflows/ncov_workflow.wdl

IEEE————————
2012 or 20147 - WDL

Cloud-based Nextstrain analyses (Aim A3) with Terra

e Work has continued to document ncov-ingest and ncov workflows on Terra

User Provided Data

GISAID Ingest s3 deploy
r |
| workspace.GISAID_API_ENDPOINT --{ workspace.AWS_ACCESS_KEY_ID] Bl
wdl task L |2} =
. - 2z8_ b8y
3 [o
= i-- -1 workspace.AWS_SECRET_ACCESS_KEY] X = required @ £ 8= »
| workspace.GISAID_USERNAME_AND PASSWORD : X =ireqs S = ; N= 3 8
‘ data : 7 = optional zeseexda
i-- -1 this or workspace.s3deploy } -o' S8 n.g o % 2 %I
H = T o 7] E=
———data flow—p H [Fil g 8 3 8 g %
: : workspace.gisaid_sequences_fasta 1— ‘ .- - | s3: nextstrain-staging/group_name } T
...... optional - - - ncov-ingest]] 2| minimal X |x [x
..... minimal_cloud X X
workspace.gisaid_metadata_tsv }— customized_sampling x |* [* [x
. 4 i t * [
v : . Nextstrain Build customized_profile (md/json) |x X |x
workspace.gisaid_last_run] : customized_context_seqs x [x e x
filter : H run one build from config file |x |* |* |x |* |* |x
(e.g. "region:Africa”) - -f -] . . .
2 workspace.gisaid_nextclade.tsv | | t----- i | |* | |% |*
passed to tsv-utils P 9 = —> " s " push to 3 staging s d
: : —— ncov —ﬂ this.auspice_dir
e >
5 —>1 this.results_dir .
ckstore nCOV/nCOV) = J httggs://ausglce.us/
run-analysis-on-terra.hfml
—»{ this.logs_array J
| E— benchmarks.tsv
Date Workflow Type Cost RunTime cpu disk_size memory Total_Sequences Per_10K_Seq_Cos{ New_Sequences Per_New_Seqs DaysS|ncelLastRun
9/19/22 GenBank_Ingest New $143.70 35h19m 96 1500 180 6172949 $0.23 6172949 $0.23 -1 ‘
9/22/22 GenBank_Ingest Cache $1270 14h1Im 16 1500 64 6182697 $0.02 9748 $13.03 3 ‘
9/26/22 GISAID_Ingest New $44.25 11h5m 96 1500 180 13044970 $0.03 13044970 $0.03 -1 :
9/28/22 GISAID_Ingest Cache $9.01 10h6m 16 1500 64 13083914 $0.01 38944 $2.31 2 [
User Provided Data 10/13/22 GISAID_Ingest Cache $6.66 8h13m 16 1500 64 13249005 $0.01 165091 $0.40 15 ‘
10/14/22 GenBank_Ingest Cache $13.21 21h19m 16 1500 64 6238859 $0.02 56162 $2.35 22 :
Sequenced samples assembled in Terra
8 10/20/22 GISAID_Ingest Cache $7.15 8h1im 16 1500 64 13300565 $0.01 51560 $1.39 7 i
9 10/22/22 GenBank_Ingest Cache $14.65 16h17m 16 1500 64 6275952 $0.02 37093 $3.95 8 ‘
10 10/29/22 GenBank_Ingest New $151.79 37h23m 96 1500 180 6304264 $0.24 6304264 $0.24 -1 |

January 24, 2023 Jenni han /34

https://dockstore.org/workflows/github.com/nextstrain/ncov/ncov:master?tab=info
https://nextstrain--999.org.readthedocs.build/projects/ncov/en/999/guides/run-analysis-on-terra.html
https://dockstore.org/workflows/github.com/nextstrain/ncov/gisaid_ingest:master?tab=info
https://dockstore.org/workflows/github.com/nextstrain/ncov/genbank_ingest:master?tab=info
https://nextstrain--999.org.readthedocs.build/projects/ncov/en/999/guides/run-ingest-on-terra.html
https://auspice.us/
https://github.com/j23414/wdl_pathogen_build/blob/main/data/benchmarks.tsv

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command
e Snakemake - 2012 published, rule, wildcards, params, modules
e Nextflow - 2013 (?) 2017 published, DataFlow, channel, isolated work dir
e CWL (verbose) and WDL
o GitHub
o Dockstore

o Terra

January 24, 2023 Jennifer Chang 29/ 34

R
Terra - Firecloud

[NON) EE FireCloud | Broad Institute x +

& C & portal.firecloud.org/?return=firecloud#methods

Filter B

My Methods (7) Public Methods (2615) Featured Methods (7)

Certified 1= Method Synopsis

Custom_Workspace
Scratch_Pad

jc_myspace
je_mygreeting

Custom_Workflow d f . fil
Test_UI_Spec Generates a word count of an input file

Custom_Workflow
nchi_datasets

jenspace
glance

Custom_Workflow
WDL_Ingest

editable
custom_workflow

1 -7 of 7 results (filtered from 2620 total) Q

v

h % @ »O0@ : |

9 jennifer.chang.bioinform@gmail.com v

Create New Method... 4=

Owners Snapshots Configur:
jennifer.chang.bioinform@g... 2 0
jennifer.chang.bioinform@g... 1 0
jennifer.chang.bioinform@g... 1 0
jennifer.chang.bioinform@g... 1 0
jennifer.chang.bioinform@g... 2 0
jennifer.chang.bioinform@g... 6 0
jennifer.chang.bioinform@g... 1 0

20 v perpage

January 24, 2023 Jennifer Chang

30/34

[NON) EE FireCloud | Broad Institute X + v
& c @ portal.firecloud.org/?return=firecloud#methods Qa M w T o B » O Q :
- © n@gmail.com v
Create New Method x
Filter hod... ¥
Namespace Name
My Method Custom_Workflow Basic_Nextstrain
Certihed IE nly letters, numbers, underscores, dashes, and periods allowed Only letters, numbers, underscores, dashes, and periods allowed
. WDL Load fromfile... Undo Redo
workflow {
call mytask
output { File outfiles=mytask.outfiles }
task mytask {
command <<<
curl "github url here"
T nextstrain version > outfile.txt
Documentation (optional) .
Preview Side-by-side Populate from WDL comment snakemake version > outfile.txt
>>>
1-7 of 7 results Output { v perpage
File outfile = "outfile.txt"
runtime {
docker: "nextstrain:base/latest” # "nextstrain:ncov-ingest"
V
Synopsis (optional, 80 characters max) } }

Snapshot Comment (optional)

Cancel Upload

January 24, 2023 Jenni hang 31/34

E——
Agenda

e Makefiles - 1976, rule, target, dependency, command
e Snakemake - 2012 published, rule, wildcards, params, modules
e Nextflow - 2013 (?) 2017 published, DataFlow, channel, isolated work dir
e CWL (verbose) and WDL
o GitHub
o Dockstore

o Terra

January 24, 2023 Jennifer Chang 32 /34

Summary

Writing a set of Makefile Rules

Writing a set of Shakemake Rules

Writing a set of Nextflow Processes

Writing a set of WDL Tasks

target : dependency rule NAME: process NAME { task NAME {
input: dependency files input: tuple, path, value '"'F__’i‘l‘;(mﬁle
command O:t?;:lt: target files o;:t':ll_m tuple, path, value # String, Int, Double, Boolean, Array, Object
shell: shell: }
command command command <<<
command
s >3
e : -
s - W(r:lrkﬂow WK_NAME { : File outfile = "outfile.txt
thread: Qme() runtime {
| view docker: "ubuntu”
} }
}
workflow WK_NAME {
input {
File textfile
}
call NAME {
input: infile=textfile
}
output {
File final_out = NAME.outfile
}
}
e 1976 e 2012 published e 2013 1st commit o 2012
e file-based caching e file-based caching e isolated work dir e specification must
e local runtime e containers, conda caching be executed on a
e named rules e targeting HPC compute engine

e DataFlow paradigm

e on Terra platform,
uses hashed
isolated directory
caching

January 24, 2023

Jennifer Chang

33/34

-
To Learn More

ertlng a set of Makefile Rules ertlng a set of Snakemake Rules Wn[mg a set of Nextflow Processes Writing a set of WDL Tasks
target : dependency rule NAME: process NAME { task NAME {
input: dependency files input: tuple, path, value '"'E_‘I‘t{ 1
i : g ile infile
command :::Eﬁm iargeiflies OI‘:::I‘:“. HIpS; path; valus # String, Int, Double, Boolean, Array, Object
1 }
command command command <<<
command
g >>>
z;:gl’!pt- } output { _ _
par.ams: workflow WK_NAME { ; File outfile = "outfile.txt
thread: Ngme() runtime {
| view docker: "ubuntu”
} }
}
workflow WK_NAME {
input {
File textfile
}
call NAME {
input: infile=textfile
}
output {
File final_out = NAME.outfile
}
}
° e Snakemake RTD e Nextflow RTD e openwdl/wdl/1.0/SP
e snakemake/snakem | e nf-core/modules EC.md
ake-wrappers
January 24, 2023 Jennifer Chang 34 /34

https://snakemake.readthedocs.io/en/stable/
https://github.com/snakemake/snakemake-wrappers/tree/master
https://github.com/snakemake/snakemake-wrappers/tree/master
https://www.nextflow.io/docs/latest/getstarted.html
https://github.com/nf-core/modules/tree/master/modules/nf-core
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md

R
References

e Stallman, R.M. and McGrath, R., 1991. GNU Make-A Program for Directing Recompilation. note: appeared in 1976,
this links to the GNU Make manual.

° Kdster, J. and Rahmann, S., 2012. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics, 28(19),
pp.2520-2522.

e Amstutz, P., Tijani¢, N., Soiland-Reyes, S., Kern, J., Stojanovic, L., Pierce, T., Chilton, J., Mikheev, M., Lampa, S.,
Ménager, H. and Frazer, S., 2015, July. Portable workflow and tool descriptions with the CWL. In Bioinformatics Open
Source Conference.

e Amstutz, P., Crusoe, M.R., Tijani¢, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager, H.,
Nedeljkovich, M. and Scales, M., 2016. Common workflow language. v1.0.

e Michael R. Crusoe, Sanne Abeln, Alexandru losup, Peter Amstutz, John Chilton, Neboj3a Tijani¢, Hervé Ménager,
Stian Soiland-Reyes, Bogdan Gavrilovi¢, Carole Goble, and The CWL Community. 2022. Methods Included:
Standardizing Computational Reuse and Portability with the Common Workflow Language. Commun. ACM 65, 6
(June 2022), 54-63.

e Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E. and Notredame, C., 2017. Nextflow enables
reproducible computational workflows. Nature biotechnology, 35(4), pp.316-319.

e Michael Kotliar, Andrey V Kartashov, Artem Barski, CWL-Airflow: a lightweight pipeline manager supporting Common
Workflow Language, GigaScience, Volume 8, Issue 7, July 2019, giz084, https://doi.org/10.1093/gigascience/giz084

e Yuen, D., Cabansay, L., Duncan, A., Luu, G., Hogue, G., Overbeck, C., Perez, N., Shands, W., Steinberg, D., Reid, C.
and Olunwa, N., 2021. The Dockstore: enhancing a community platform for sharing reproducible and accessible
computational protocols. Nucleic acids research, 49(W1), pp.W624-W632.

° Gorzalski, A.J., Boyles, C., Sepcic, V., Verma, S., Sevinsky, J., Libuit, K., Van Hooser, S. and Pandori, M.W., 2022.
Rapid repeat infection of SARS-CoV-2 by two highly distinct delta-lineage viruses. Diagnostic Microbiology and
Infectious Disease, 104(1), p.115747.

e Perkel, J.M., 2019. Workflow systems turn raw data into scientific knowledge. Nature, 573(7772), pp.149-151.

GitHub

° https://qgithub.com/j23414/compare_workflows

January 24, 2023 Jennifer Chang 35/34

https://www.gnu.org/software/make/
https://doi.org/10.1093/bioinformatics/bts480
https://pure.manchester.ac.uk/ws/portalfiles/portal/45797989/cwl_abstract_bosc.pdf
https://doi.org/10.6084/m9.figshare.3115156.v2
https://cacm.acm.org/magazines/2022/6/261172-methods-included/fulltext
https://cacm.acm.org/magazines/2022/6/261172-methods-included/fulltext
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1093/nar/gkab346
https://doi.org/10.1093/nar/gkab346
https://github.com/j23414/compare_workflows

