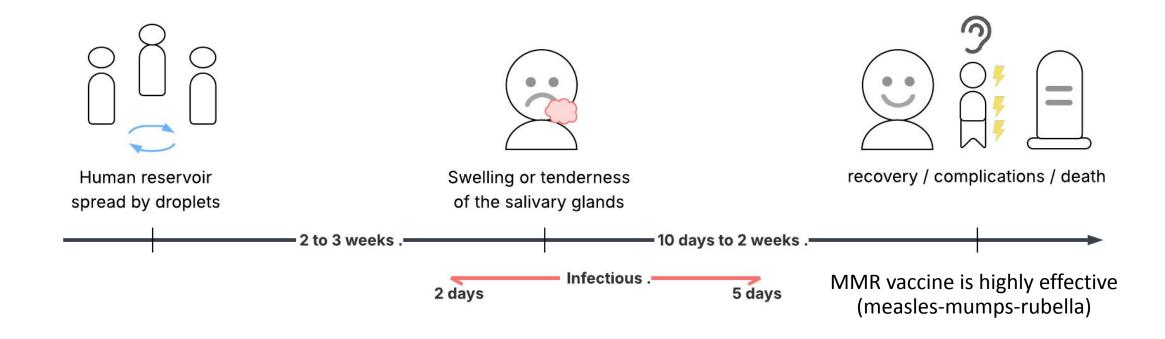
Modernizing Mumps workflows

- Bedford Lab Meeting -

Jennifer Chang, Ph.D.

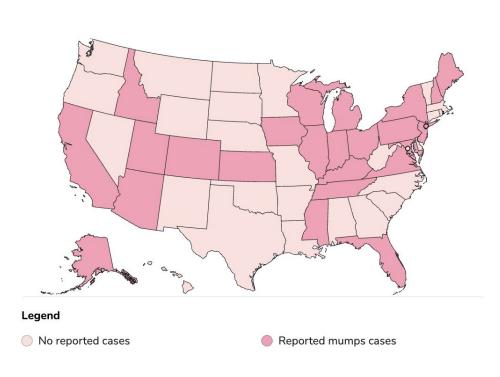

Bioinformatic Analyst III

Fred Hutchinson Cancer Center

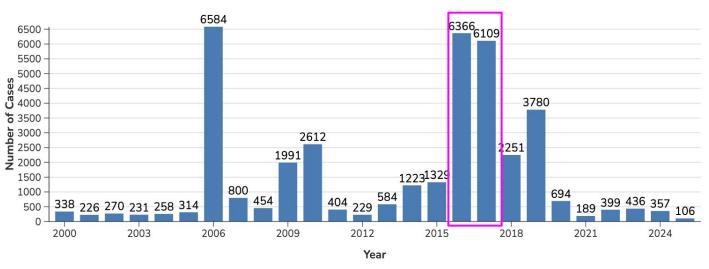
Outline

- About Mumps
- Why align to the Pathogen Repo Guide
- Walk-through roadmap and key decisions points
 - Ingest workflow
 - Phylogenetic workflow
 - Nextclade workflow
- Next steps

About Mumps



https://www.cdc.gov/mumps/downloads/mumps-clinical-diagnosis-fact-sheet-508.pdf

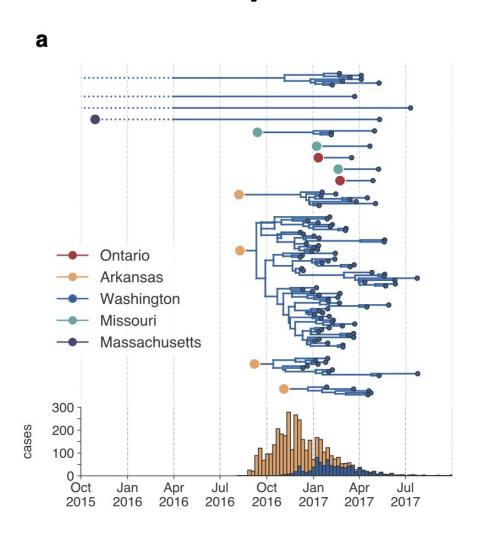

May 14, 2025 Jennifer Chang 4 / 56

Mumps cases still occur in the USA

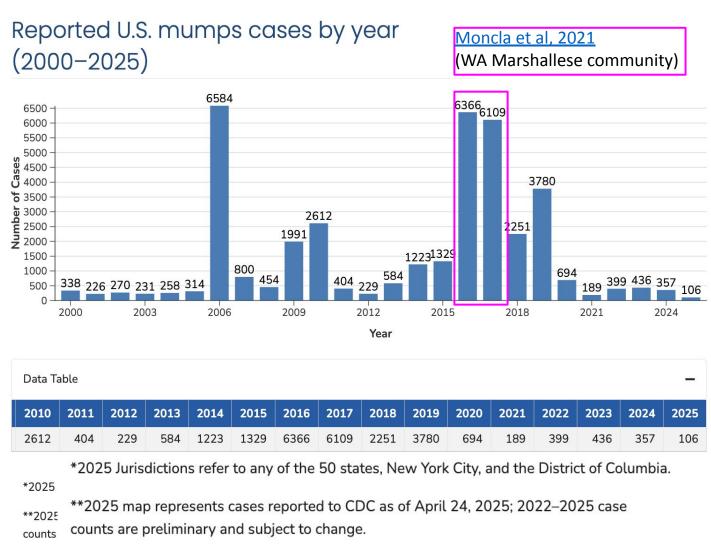
Reported U.S. mumps cases by jurisdiction, 2025*

Reported U.S. mumps cases by year (2000–2025)

Data Table —											-				
2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
2612	404	229	584	1223	1329	6366	6109	2251	3780	694	189	399	436	357	106


^{*2025} Jurisdictions refer to any of the 50 states, New York City, and the District of Columbia.

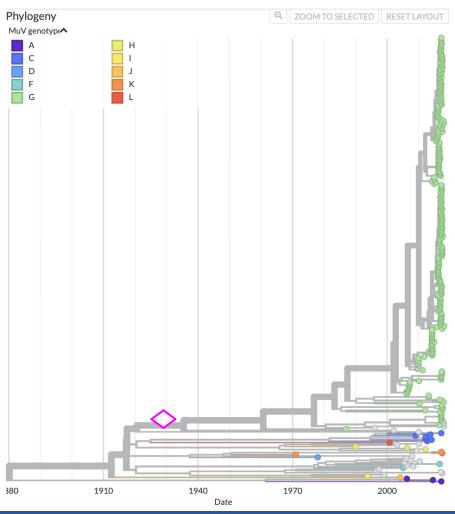
https://www.cdc.gov/mumps/outbreaks/index.html


May 14, 2025 Jennifer Chang 5 / 56

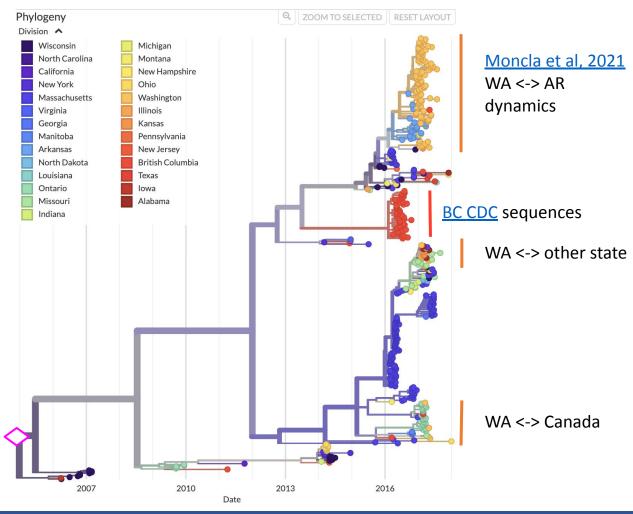
^{**2025} map represents cases reported to CDC as of April 24, 2025; 2022–2025 case counts are preliminary and subject to change.

Mumps cases still occur in the USA

Figure 3: The mumps outbreak in Washington was seeded by approximately 13 introductions.

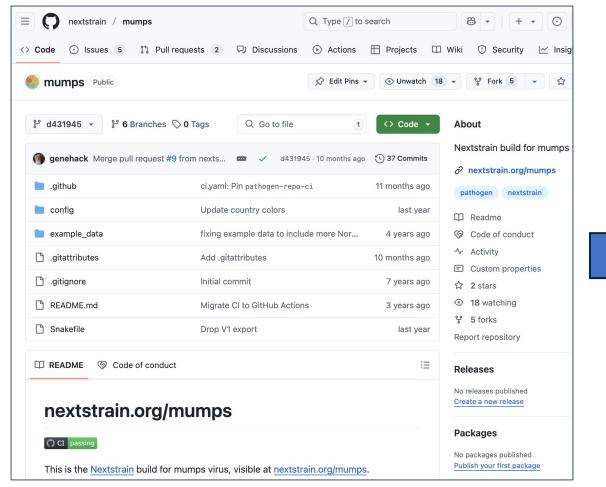


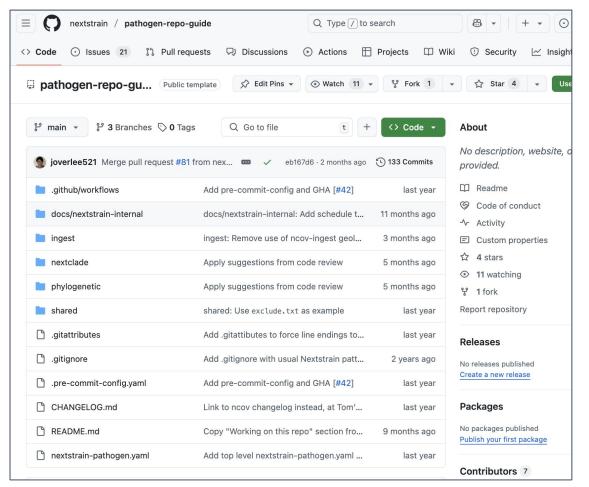
https://www.cdc.gov/mumps/outbreaks/index.html


May 14, 2025 Jennifer Chang 6 / 56

Existing Mumps Nextstrain site

global tree




na (north-america) tree

May 14, 2025 Jennifer Chang 7 / 56

Update Mumps Nextstrain workflow

- Refactor code into subdirectories (workflows)
- Connect GitHub Action automation

Pathogen-repo-guide

Why align to a pathogen repo guide?

Nextstrain GitHub Practices

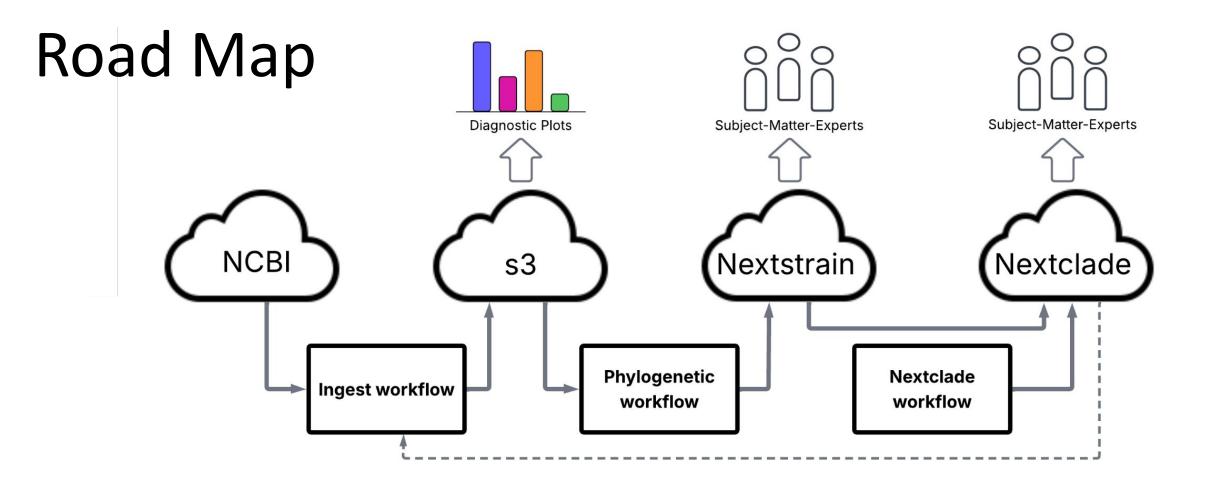
Consistency and Reproducibility

Nextstrain's focus on pathogen genomics requires a high degree of consistency in data analysis workflows. By implementing best practices, particularly in Snakemake workflows, we ensure:

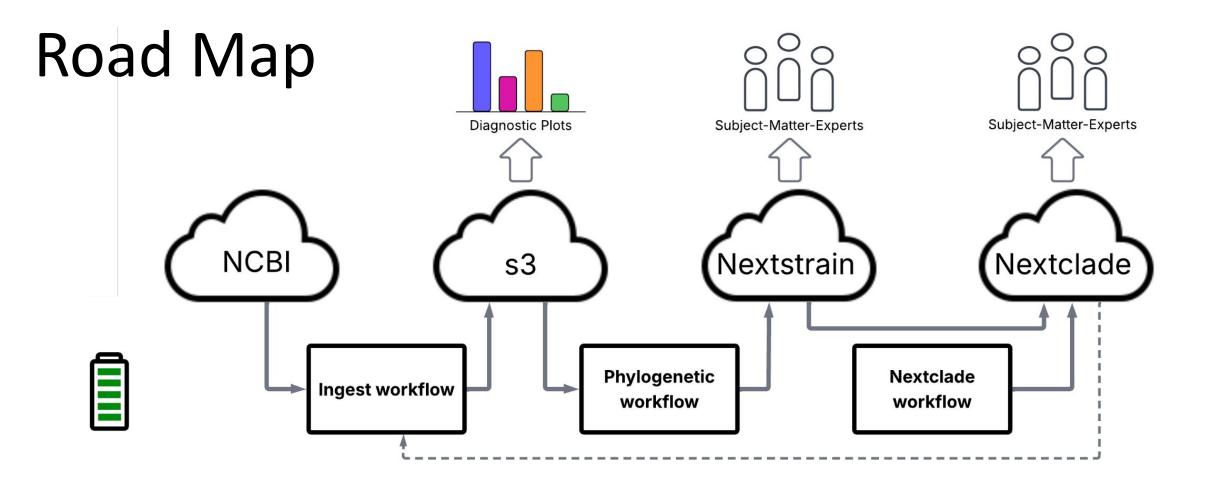
- Reproducible analysis across different datasets and pathogens
- Uniform coding standards that facilitate easier code review and maintenance
- Consistent file structures and naming conventions

Continuous Improvement and Adaptability

The field of pathogen genomics is rapidly evolving, and Nextstrain's best practice aims to collaboratively adapt and maintain high quality by:

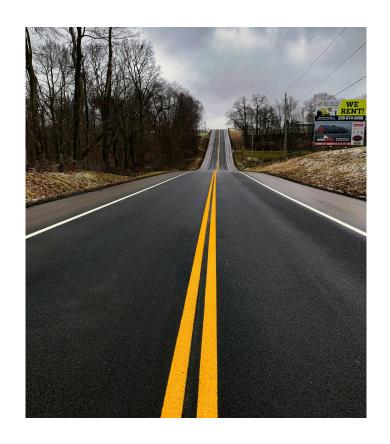

- Regular review and updates to best practices to incorporate new tools and methodologies
- Some flexibility to adapt workflows for different pathogens and analysis requirements

Road Map



Overview of implementing the pathogen-repo-guide

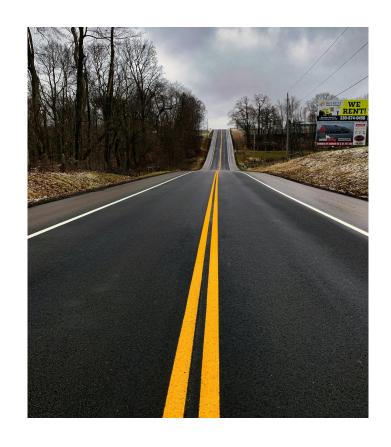
May 14, 2025 Jennifer Chang 11 / 56



Add some checkpoints to collect feedback

Pace yourself so you don't burn out

GitHub PRs - levels of effort for review

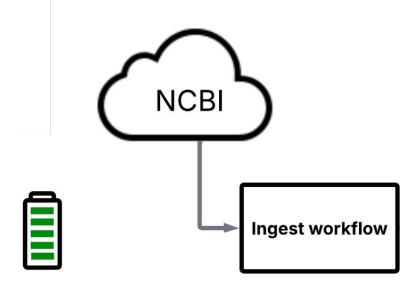

pathogen-repo-guide

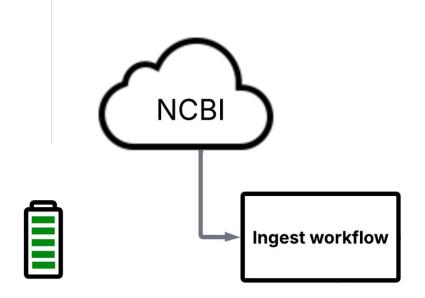
in another repo

add a new standard

Photos by <u>Leslie Saunders</u>, <u>Jens Lelie</u>, and <u>Joshua Earle</u> on <u>Unsplash</u>

GitHub PRs - levels of effort for review


in another repo
(e.g. copy an existing script)

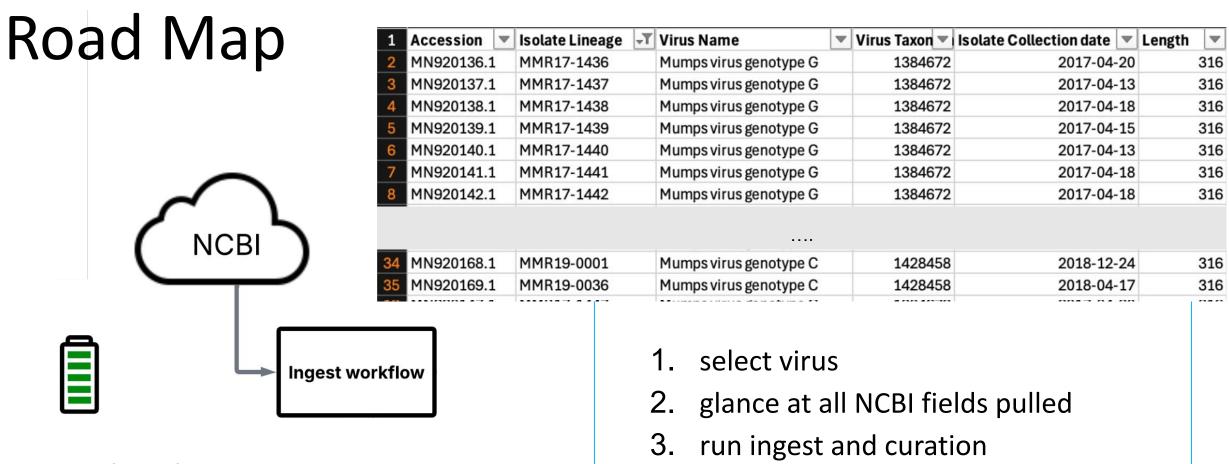

add a new standard (e.g. add a new tool/feature)

Photos by Leslie Saunders, Jens Lelie, and Joshua Earle on Unsplash

Road Map

Road Map

maybe spike in BC CDC sequences mumps NCBI Taxon ID: 2560602

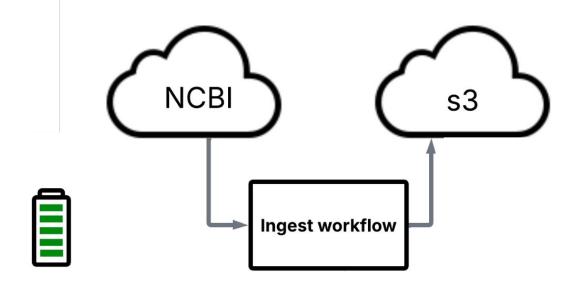

Guide for ingesting public data from NCBI.

The workflow outputs a pair of curated metadata and sequences that can be used as input for the phylogenetic workflow.

- 1. select virus
- 2. glance at all NCBI fields pulled
- 3. run ingest and curation
- 4. push curated files to s3

https://docs.nextstrain.org/en/latest/tutorials/creating-a-pathogen-repo/creating-an-ingest-workflow.html

May 14, 2025 Jennifer Chang 17 / 56

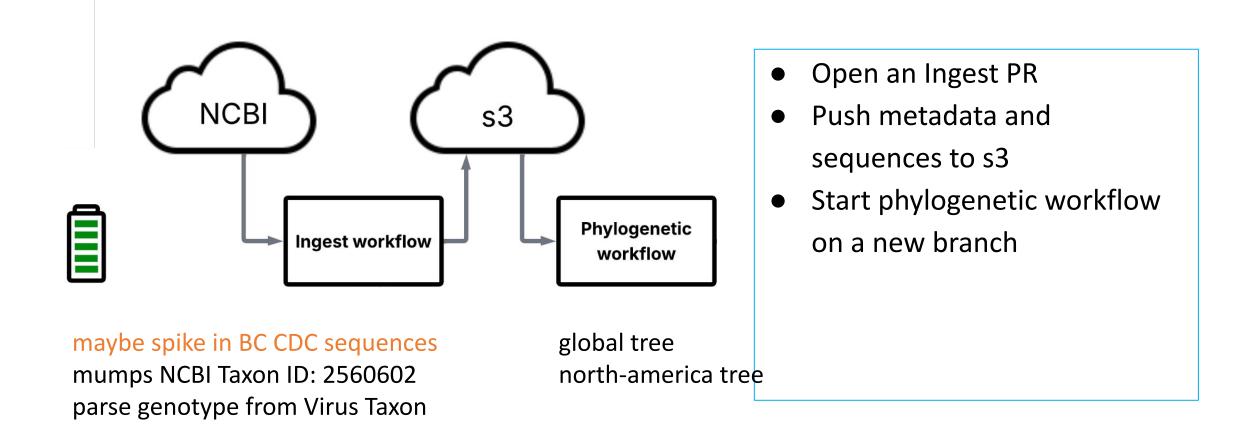

maybe spike in BC CDC sequences

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon

4. push curated files to s3

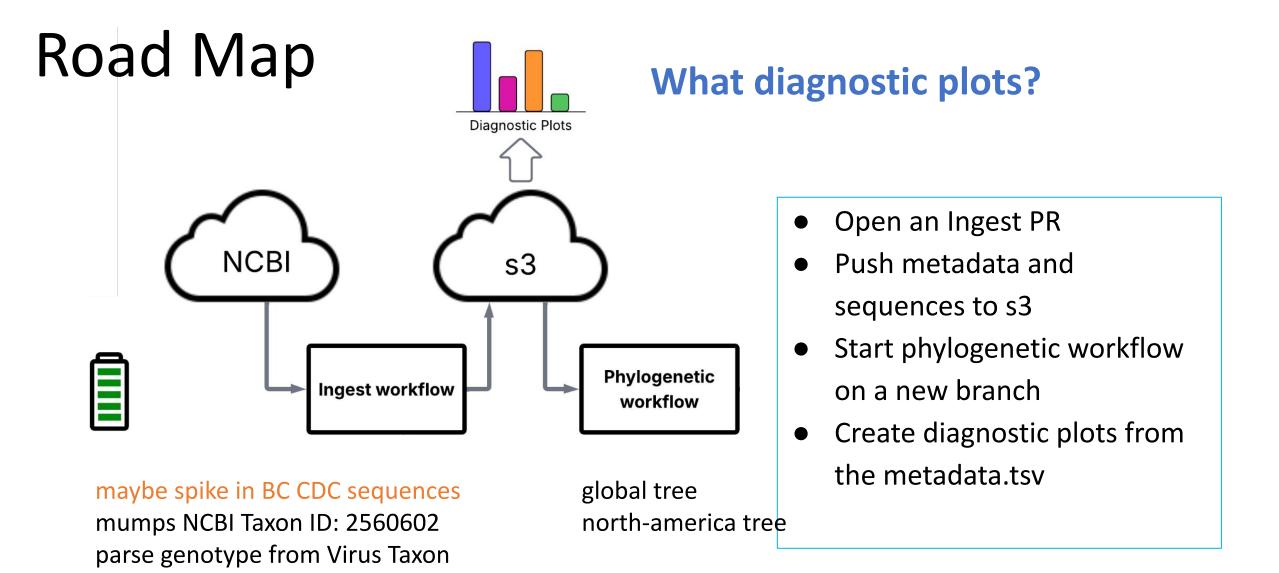
https://docs.nextstrain.org/en/latest/tutorials/creating-a-pathogen-repo/creating-an-ingest-workflow.html

Road Map


maybe spike in BC CDC sequences

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon

- Open an Ingest PR
- Push metadata and sequences to s3


https://docs.nextstrain.org/en/latest/tutorials/creating-a-pathogen-repo/creating-an-ingest-workflow.html

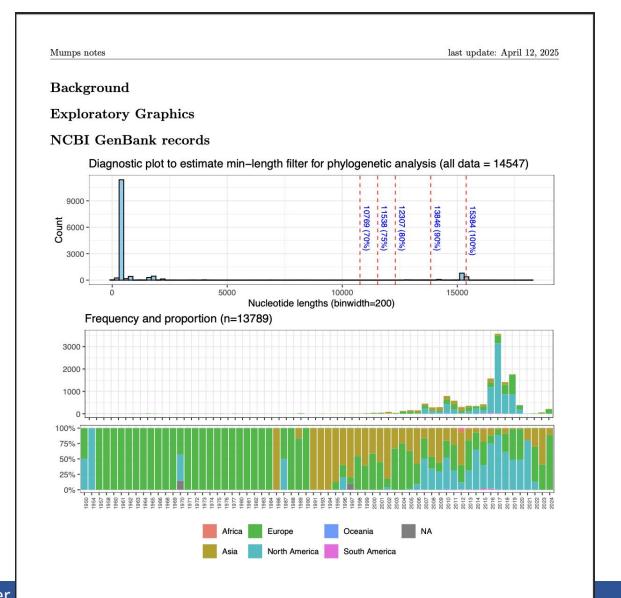
Road Map

https://docs.nextstrain.org/en/latest/tutorials/creating-a-phylogenetic-workflow.html

May 14, 2025 Jennifer Chang 21 / 56

https://docs.nextstrain.org/en/latest/tutorials/creating-a-phylogenetic-workflow.html

Explore the Mumps data - Diagnostic plots


Pull metadata.tsv from s3 bucket

Generalize and import diagnostic plots

```
source("shared_functions.R")

diagnostic_length_plot(
  data = data,
  approx_length = 15384, # nt length of Mumps genome
  binwidth = 200,
  percentage_y = 9000 # y-coordinate for min-length labels
)
```

GitHub: j23414/generated-reports/reports/mumps.pdf

May 14, 2025 Jennifer

Explore the Mumps data - tables

Table 1: Top 25 most frequent sequence submitters with their region and countries

	authors	n	regions	countries				
	hiebert et al.	3174	North America	Canada				
	mcnall et al.	1502	North America	USA				
	castellanos et al.	1061	Europe	Spain				
	wharton et al. 945 cui et al. 514 bodewes et al. 488		North America, Oceania	USA, Micronesia, Marshall Islands				
			Europe, Asia, North America	United Kingdom, China, Dominican Republic				
			Europe	Netherlands				
	gouma et al.	485	Europe, North America	Netherlands, USA				
	rota et al.	425	North America, NA	USA, NA				
	kidokoro et al.	392	Asia, NA	Japan, Mongolia, NA				
	frost et al.	319	Europe, North America	United Kingdom, Canada				
	bryant et al.	315	North America	USA				
	kim et al.	285	North America, Asia, NA	USA, South Korea, NA, Korea				
	hickman et al.	254	North America	USA				
	peran-ramos et al.	253	Europe	Spain				
	aoki et al.	249	Asia	Japan				
	gavilan et al.	227	Europe	Spain				
	rubalskaia et al.	218	Europe	Russia				
	ma et al. 178		Asia	China				
	catellanos et al.	172	Europe	Spain				
	byrne et al.	169	North America	USA				
	moncla et al.	166	North America	USA				
	anton et al.	155	Europe	Spain				
	shah et al.	154	Europe, North America	Netherlands, Canada				
	rivailler et al.	144	Oceania, North America	Guam, USA				
	jin et al.	142	NA, Europe, Asia, North America	NA, Sweden, Japan, United Kingdom, USA, Germany, Malaysia,				

Earliest and latest submitters

Gouma et al.

Table 2: Top 20 earliest records

$date_adjusted$	accession	strain	country	authors
1950-01-01	JQ946042	MuVi/Taylor.GBR/0.50s	United Kingdom	Jin et al.
1950-01-01	KF876715	MuVi/Kilham.USA/0.50[A]	USA	Jin et al.
1954-01-01	KX136900	MuVi/Albany.USA/0.54[A]	USA	Gouma et al.
1954-01-01	KX136946	MuVi/Albany.USA/0.54[A]	USA	Gouma et al.
1954-01-01	KX136993	MuVi/Albany.USA/0.54[A]	USA	Gouma et al.
1957-01-01	KX136901	MuVi/NLD/0.57[L]	Netherlands	Gouma et al.
1957-01-01	KX136947	MuVi/NLD/0.57[L]	Netherlands	Gouma et al.
1957-01-01	KX136994	MuVi/NLD/0.57[L]	Netherlands	Gouma et al.
1958-01-01	JQ034458	Enders-58-2	United Kingdom	Cui et al.
1958-01-01	JQ034507	ENDERS-58-2	United Kingdom	Cui et al.
1960-01-01	KX136902	MuVi/NLD/0.60/1[L]	Netherlands	Gouma et al.
1960-01-01	KX136903	MuVi/NLD/0.60/2[L]	Netherlands	Gouma et al.
1960-01-01	KX136948	MuVi/NLD/0.60/1[L]	Netherlands	Gouma et al.
1960-01-01	KX136949	MuVi/NLD/0.60/2[L]	Netherlands	Gouma et al.
1960-01-01	KX136995	MuVi/NLD/0.60/1[L]	Netherlands	Gouma et al.

MuVi/NLD/0.60/2[L]

MuVi/NLD/0.61[D]

MuVi/NLD/0.61[D]

MuVi/NLD/0.61[D]

MuVi/NLD/0.62/1

Netherlands

Netherlands

Netherlands

Netherlands

Netherlands

1960-01-01

1961-01-01

1961-01-01

1961-01-01

1962-01-01

KX136996

KX136904

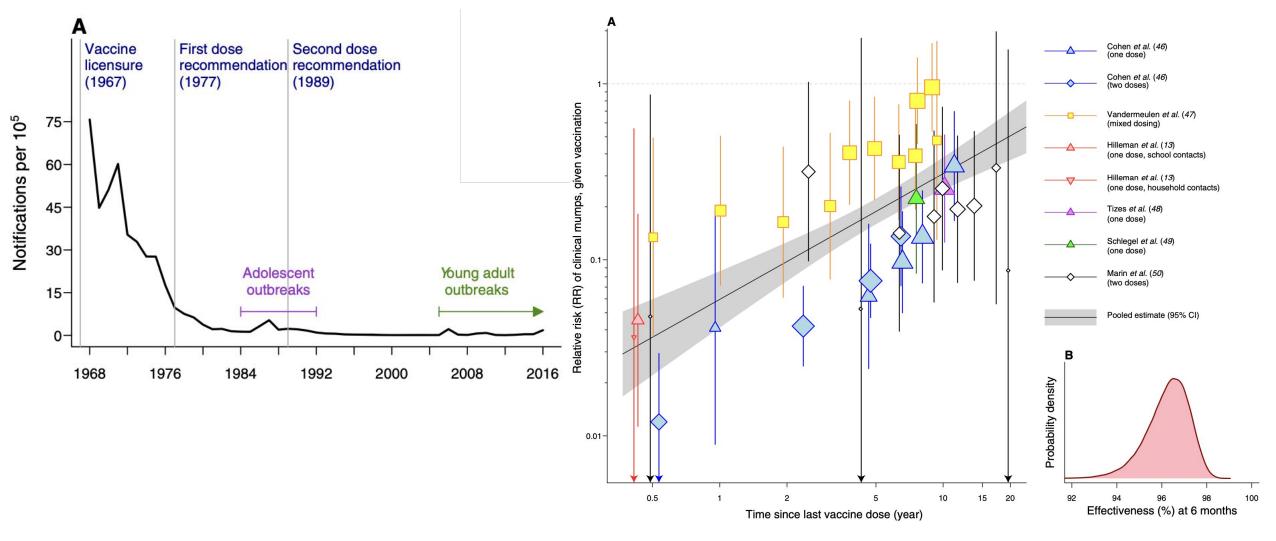
KX136950

KX136997

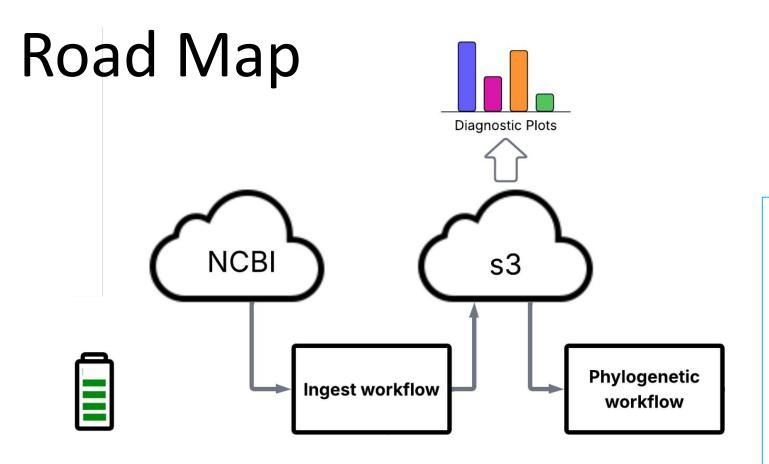
KX136905

Table 3: Top 20 latest records

$date_adjusted$	accession	strain	country	authors
2024-03-22	PQ311690	MuVs/KIPMR/Chennai.IND/4.24/3[C]	India	Kaveri et al.
2024-03-23	PQ311691	MuVs/KIPMR/Chennai.IND/4.24/4[C]	India	Kaveri et al.
2024-03-23	PQ311692	MuVs/KIPMR/Chennai.IND/4.24/5[C]	India	Kaveri et al.
2024-03-25	PQ311693	MuVs/KIPMR/Chennai.IND/5.24[C]	India	Kaveri et al.
2024-05-14	PQ311694	MuVs/KIPMR/Chennai.IND/3.24[C]	India	Kaveri et al.
2024-05-14	PQ311695	MuVs/KIPMR/Chennai.IND/3.24/2[C]	India	Kaveri et al.
2024-05-14	PQ311696	MuVs/KIPMR/Chennai.IND/3.24/3[C]	India	Kaveri et al.
2024-05-14	PQ311697	MuVs/KIPMR/Chennai.IND/3.24/4[C]	India	Kaveri et al.
2024-05-17	PQ451425	MuVs/Odisha.INDIA/20.24[C]	India	Mamidi et al.
2024-05-17	PQ451426	MuVs/Odisha.INDIA/20.24/1[C]	India	Mamidi et al.
2024-05-17	PQ451427	MuVs/Odisha.INDIA/20.24/2[C]	India	Mamidi et al.
2024-05-17	PV072739	MuVs/Odisha.INDIA/20.24/8[C]	India	Mishra et al.
2024-05-27	PV072740	MuVs/Odisha.INDIA/20.24/9[C]	India	Mishra et al.
2024-06-07	PQ001008	MuVs/Makhchkala.RUS/23.24[C]	Russia	Zamotaeva et al.
2024-06-07	PQ001009	MuVs/Makhchkala.RUS/23.24[G]	Russia	Zamotaeva et al.
2024-06-19	PV072734	MuVs/Odisha.INDIA/20.24/3[C]	India	Mishra et al.
2024-07-05	PV072735	MuVs/Odisha.INDIA/20.24/4[C]	India	Mishra et al.
2024-07-31	PV072738	MuVs/Odisha.INDIA/20.24/7[C]	India	Mishra et al.
2024-08-09	PV072737	MuVs/Odisha.INDIA/20.24/6[C]	India	Mishra et al.
2024-08-29	PV072736	MuVs/Odisha.INDIA/20.24/5[C]	India	Mishra et al.


Literature review - collect papers

- What is the earliest study identifying Mumps as a viral disease?
- When was the Mumps virus first **sequenced**, and which genome region was published?
- When was the first Mumps vaccine developed, and how effective was it?
- Have there been major updates to the vaccine? What prompted them?
- What genotype system has been used for Mumps virus strains?
- What are some of the key open questions in recent Mumps virus research?

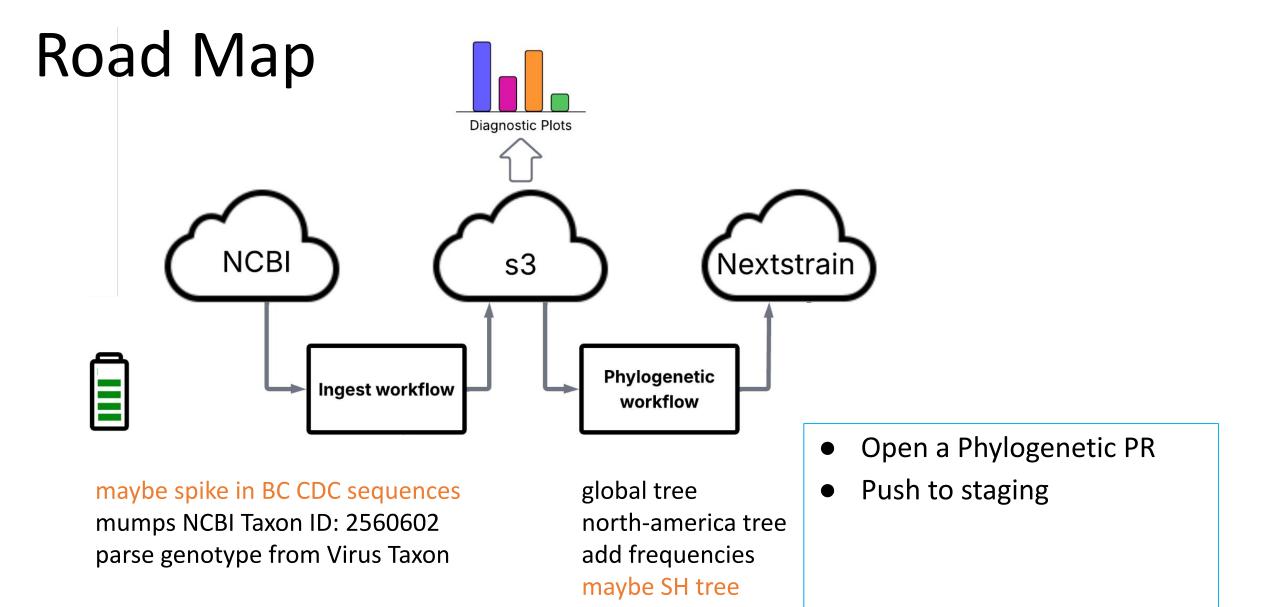

Literature review - collect papers

- What is the earliest study identifying Mumps as a viral disease?
 - (Johnson and Goodpasture, 1933) "An investigation of the etiology of Mumps"
- When was the Mumps virus first **sequenced**, and which genome region was published?
 - 1989 gene segments (F, HN, SH, ...) perhaps Takeuchi et al; full genome perhaps Mori
- When was the first Mumps vaccine developed, and how effective was it?
 - (Hillman et al, 1967) "Live Attenuated Mumps Virus Vaccine" Jeryl-Lynn Strain
- Have there been major updates to the vaccine? What prompted them?
 - Yes, side effects or regional genotype (Urabe, Leningrad-3, Rubini, Miyahara)
- What genotype system has been used for Mumps virus strains?
 - (Jin et al, 2005; Jin et al, 2015; WHO 2012) tables of SH, HN, and full genome
- What are some of the key open questions in recent Mumps virus research?
 references
 - CDC Mumps website; Moncla et al, 2021; Lewnard & Grad, 2018

Immune waning > antigenic advance

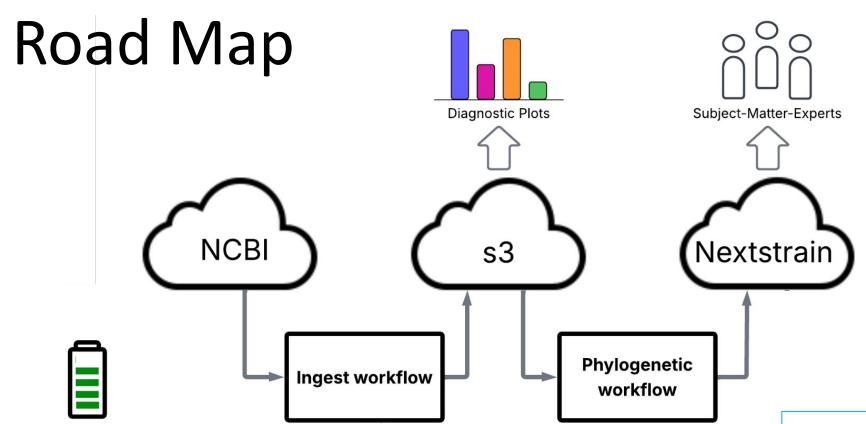
Lewnard & Grad, 2018; Rubin et al, 2011

maybe spike in BC CDC sequences


mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon

global tree north-america tree add frequencies

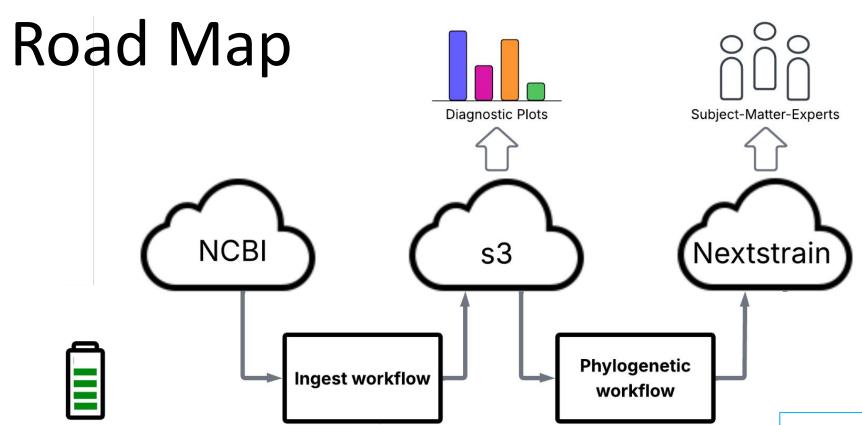
maybe SH tree


- Create diagnostic plots from the metadata.tsv
 - o pick a min-length
 - sampling
 - ID potential SMEs

https://docs.nextstrain.org/en/latest/tutorials/creating-a-phylogenetic-workflow.html

https://docs.nextstrain.org/en/latest/tutorials/creating-a-phylogenetic-workflow.html

May 14, 2025 Jennifer Chang 30 / 56

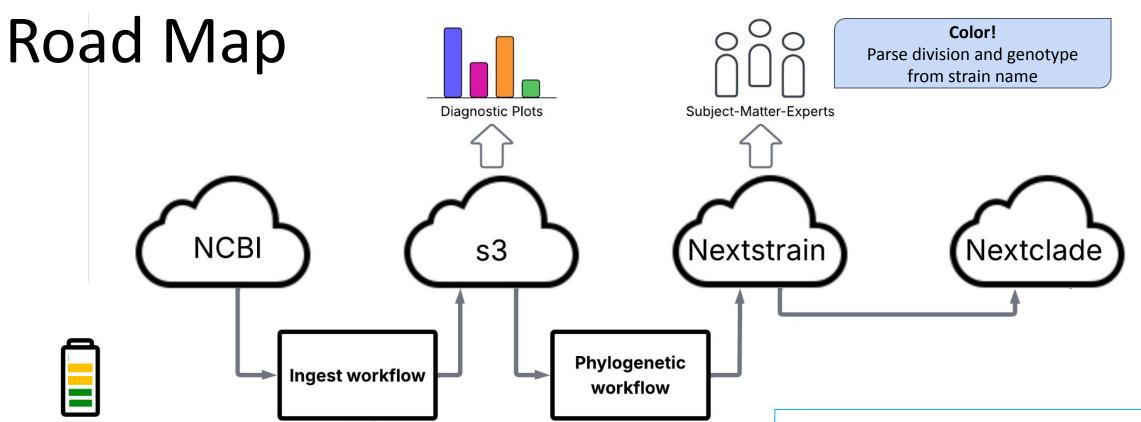


maybe spike in BC CDC sequences

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon

global tree north-america tree add frequencies maybe SH tree

- Open a Phylogenetic PR
- Push to staging
- Contact SME's

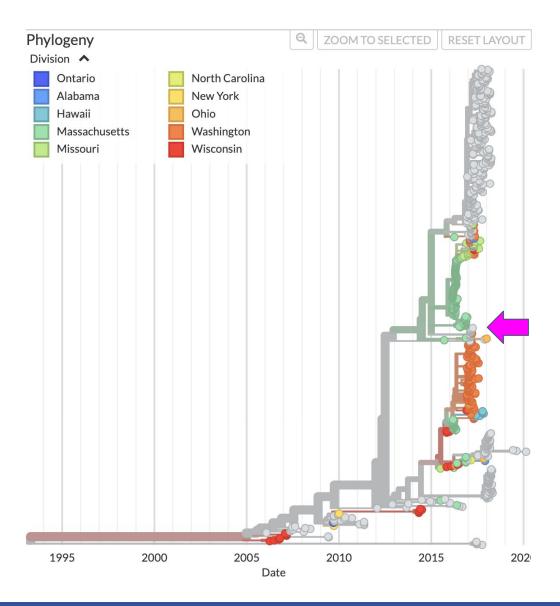


maybe spike in BC CDC sequences

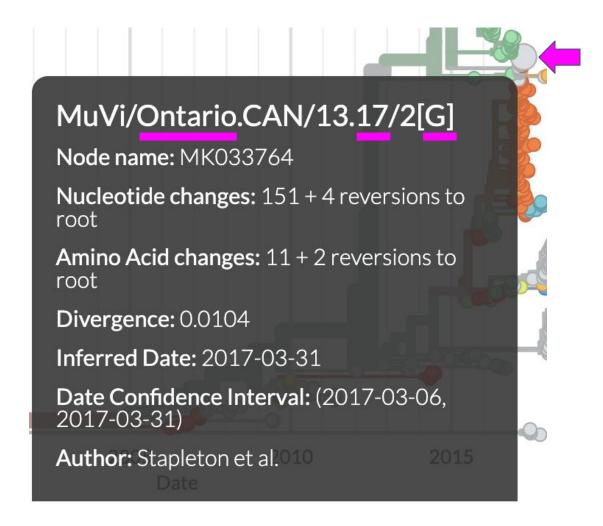
mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon

global tree north-america tree add frequencies maybe SH tree

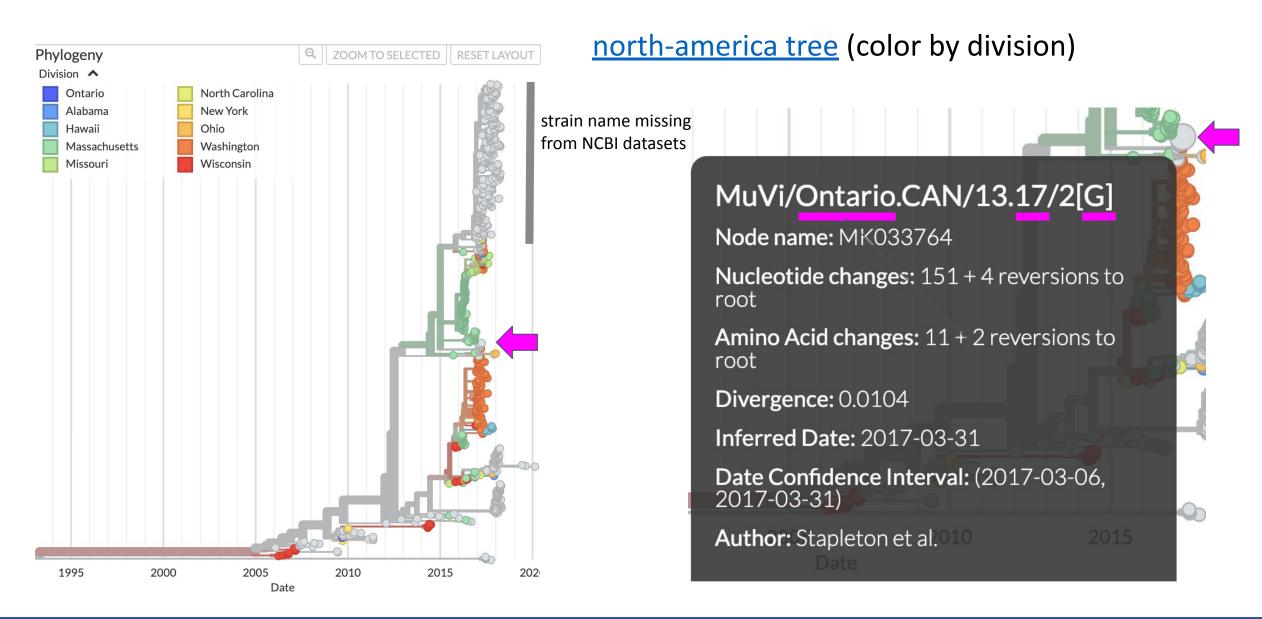
- Open a Phylogenetic PR
- Push to staging
- Contact SME's
- Ingest is not merged yet, so can still adjust ingest


maybe spike in BC CDC sequences
mumps NCBI Taxon ID: 2560602
parse genotype from Virus Taxon
parse division and genotype from strain
pull strain name -> parse genbank

global tree north-america tree add frequencies maybe SH tree


- Open a Phylogenetic PR
- Push to staging
- Contact SME's
- Ingest is not merged yet, so can still adjust ingest

May 14, 2025 Jennifer Chang 33 / 56


Infer division from strain name

north-america tree (color by division)

Infer division from strain name

May 14, 2025 Jennifer Chang 35 / 56

Missing strain names

accession	accession_version	strain	date	region	country	division	location	length
MN920136	MN920136.1	MMR17-1436	4/20/17	North Americ	Canada			316
MN920137	MN920137.1	MMR17-1437	4/13/17	North Americ	Canada			316
MN920138	MN920138.1	MMR17-1438	4/18/17	North Americ	Canada			316
MN920139	MN920139.1	MMR17-1439	4/15/17	North Americ	Canada			316
MN920140	MN920140.1	MMR17-1440	4/13/17	North Americ	Canada			316
MN920141	MN920141.1	MMR17-1441	4/18/17	North Americ	Canada			316
MN920142	MN920142.1	MMR17-1442	4/18/17	North Americ	Canada			316
MN920143	MN920143.1	MMR17-1443	4/16/17	North Americ	Canada			316
MN920144	MN920144.1	MMR17-1444	4/18/17	North Americ	Canada			316
MN920145	MN920145.1	MMR17-1445	4/18/17	North Americ	Canada			316
MN920146	MN920146.1	MMR17-1446	4/18/17	North Americ	Canada			316
MN920147	MN920147.1	MMR17-1447	4/20/17	North Americ	Canada			316
4 MN920148	MN920148.1	MMR17-1448	4/20/17	North Americ	Canada			316
MN920149	MN920149.1	MMR17-1461	4/18/17	North Americ	Canada			316
MN920150	MN920150.1	MMR17-1463	4/19/17	North Americ	Canada			316
MN0001E1	MN0001E1 1	MMD17 1464	4/20/17	North Amoria	Canada			216

<u>measles</u> -> submitted a request for NCBI datasets to support "strain" (and "isolate") fields

May 14, 2025 Jennifer Chang

```
L0CUS
            MN920136
                                     316 bp
                                                       linear
                                                               VRL 19-JAN-2020
DEFINITION
           Mumps virus genotype G strain MuVs/Manitoba.CAN/16.17/8[G] small
            hydrophobic protein (SH) gene, complete cds.
ACCESSION
           MN920136
VERSION
            MN920136.1
KEYWORDS
SOURCE
            Mumps virus genotype G
  ORGANISM
           Mumps virus genotype G
            Viruses; Riboviria; Orthornavirae; Negarnaviricota;
            Haploviricotina; Monjiviricetes; Mononegavirales; Paramyxoviridae;
            Rubulavirinae; Orthorubulavirus; Orthorubulavirus parotitidis.
           1 (bases 1 to 316)
REFERENCE
  AUTHORS
           Hiebert, J. and Severini, A.
  TITLE
            Mumps surveillance in Canada
  JOURNAL
           Unpublished
REFERENCE
           2 (bases 1 to 316)
  AUTHORS
           Hiebert, J. and Severini, A.
  TITLE
            Direct Submission
           Submitted (09-JAN-2020) Viral Exanthemata & STDs, National
  JOURNAL
            Microbiology Laboratory, Public Health Agency of Canada, 745 Logan
            Avenue, Winnipeg, Manitoba R3E 3L5, Canada
COMMENT
            ##Assembly-Data-START##
            Sequencing Technology :: Sanger dideoxy sequencing
            ##Assemblv-Data-END##
FEATURES
                     Location/Qualifiers
                    1..316
     source
                     /organism="Mumps virus genotype G"
                     /mol type="viral cRNA"
                     /strain="MuVs/Manitoba.CAN/16.17/8[G]"
                     /isolate="MMR17-1436"
                    /isolation_source="buccal swap"
                     /host="Homo sapiens"
                     /db xref="taxon:1384672"
                     /geo_loc_name="Canada"
                     /collection date="2017-04-20"
                     /note="genotype: G"
                     51..224
     gene
                     /gene="SH"
     CDS
                     51..224
                     /gene="SH"
                     /codon start=1
                     /product="small hydrophobic protein"
                     /protein_id="QHG14343.1"
                     /translation="MPAIQPPLYLTFLLLILLYLIITLYVWIILTVTYKTAVRHAALY
                     QRSFFHWSFDHSL"
ORIGIN
       1 aagaatgaat ctcatggggt cgtaacgtct cgtgaccctg ccgttgcact atgccggcga
       61 tccaacccc attatacctc acatttctat tgctaattct tctttatctg atcataactt
      121 tgtatgtctg gattatatta actgttactt ataagactgc ggtgcgacat gcagcactgt
      181 accagagate ettetteae tggagtteg ateacteaet etaagaagat eeccagttag
```

241 gacaagttcc gatccatcat gcaagaacaa tctgcatttg aataatgccg ttcaatcatg

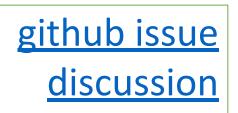
Go to: 💙

Different coders, different solutions

oropouche - custom script

mumps - custom script

```
149
        rule parse_strain_from_genbank:
150
            input:
151
                genbank="data/genbank.gb",
152
            output:
                strain_names="data/strain_names.tsv",
153
154
            benchmark:
155
                "benchmarks/parse_strain_from_genbank.txt",
156
            params:
157
                annotation="strain",
158
            shell:
159
                ./scripts/parse-genbank-annotations.py \
160
                   --annotation {params.annotation} \
161
162
                   --silent-no-match \
                   {input.genbank:g} \
163
164
                > {output.strain_names:q}
165
```


ebola - new tool: bio

```
rule parse_genbank_to_ndjson:
150
151
            input:
152
                genbank="data/genbank.gb",
153
            output:
154
                ndjson="data/ncbi entrez.ndjson",
155
            benchmark:
                "benchmarks/parse_genbank_to_ndjson.txt"
156
157
            shell:
158
                bio json {input.genbank:g} \
159
                | jq -c '.[] | {{accession: .record.accessions[0], strain: .record.strain[0]}}' \
160
                > {output.ndjson:q}
161
162
```

rubella

- -> also tested out bio + custom script to get genotype
- -> tested parsing all fields from the GB or the XML files (SeqIO)

Lassa -> also <u>tested out bio</u> to get strain names and L/S names

Pathogen-repo-guide: annotations.tsv

```
# Manually curated annotations TSV file
      # The TSV should not have a header and should have exactly three columns:
      # id to match existing metadata, field name, and field value
      # If there are multiple annotations for the same id and field, then the last value is used
      # Lines starting with '#' are treated as comments
      # Any '#' after the field value are treated as comments.
      # This is a workaround since NCBI datasets pulls "isolate" instead of "strain" annotations
8
      # This step can be dropped if we come up with a solution to issue in https://github.com/nextstrain/mumps/issues/15
9
      MN920136
                 strain MuVs/Manitoba.CAN/16.17/8[G]
10
      MN920137
                 strain MuVs/Manitoba.CAN/15.17/8[G]
11
      MN920138
                 strain MuVs/Manitoba.CAN/16.17/9[G]
      MN920139
12
                 strain MuVs/Manitoba.CAN/15.17/9[G]

    Gives the team enough time to

      MN920140
13
                 strain MuVs/Manitoba.CAN/15.17/10[G]
14
      MN920141
                 strain MuVs/Manitoba.CAN/16.17/10[G]
                                                                            discuss code implementations
15
      MN920142
                 strain MuVs/Manitoba.CAN/16.17/11[G]
                 strain MuVs/Manitoba.CAN/15.17/11[G]
16
      MN920143
17
      MN920144
                 strain MuVs/Manitoba, CAN/16, 17/12[G]
                                                                            Speeds up getting the site updated for
18
      MN920145
                 strain MuVs/Manitoba.CAN/16.17/13[G]
19
      MN920146
                 strain MuVs/Manitoba.CAN/16.17/14[G]
20
      MN920147
                 strain MuVs/Manitoba.CAN/16.17/15[G]
                                                                            next round of SME review
21
      MN920148
                 strain MuVs/Manitoba.CAN/17.17/8[G]
22
      MN920149
                 strain MuVs/Saskatchewan.CAN/16.17[G]
23
                 strain MuVs/Saskatchewan.CAN/16.17/2[G]
      MN920150

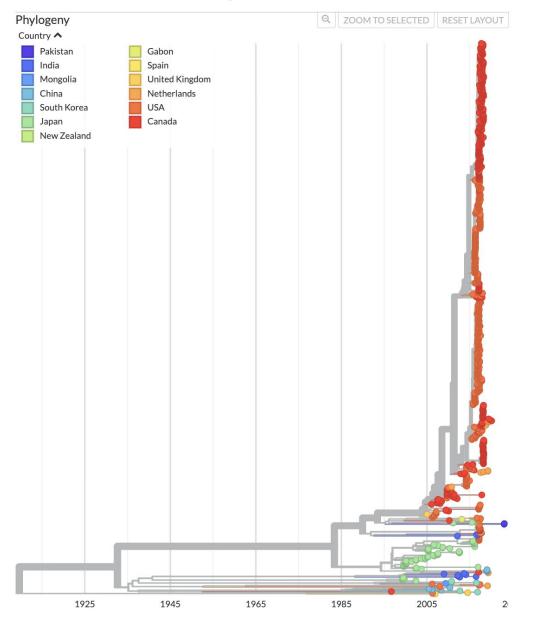
    Can be easily replaced by the final

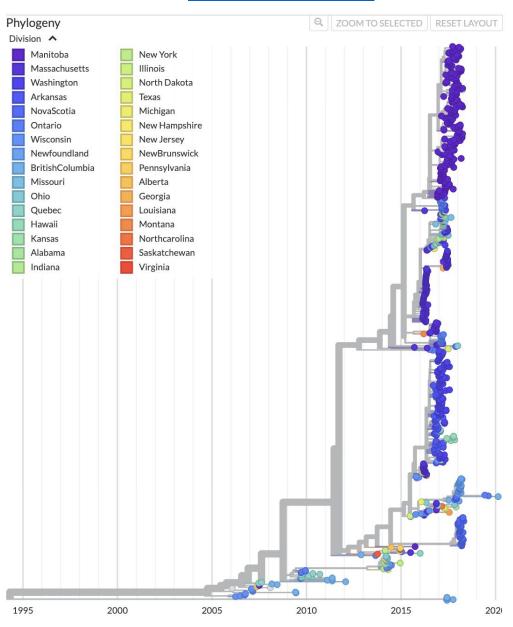
24
                 strain MuVs/Saskatchewan.CAN/16.17/3[G]
      MN920151
25
      MN920152
                 strain MuVs/Saskatchewan.CAN/16.17/4[G]
                                                                            code implementation
26
      MN920153
                 strain MuVs/Saskatchewan, CAN/16, 17/5[G]
27
      MN920154
                 strain MuVs/Saskatchewan.CAN/16.17/6[G]
28
      MN920155
                 strain MuVs/Saskatchewan.CAN/16.17/7[G]
```

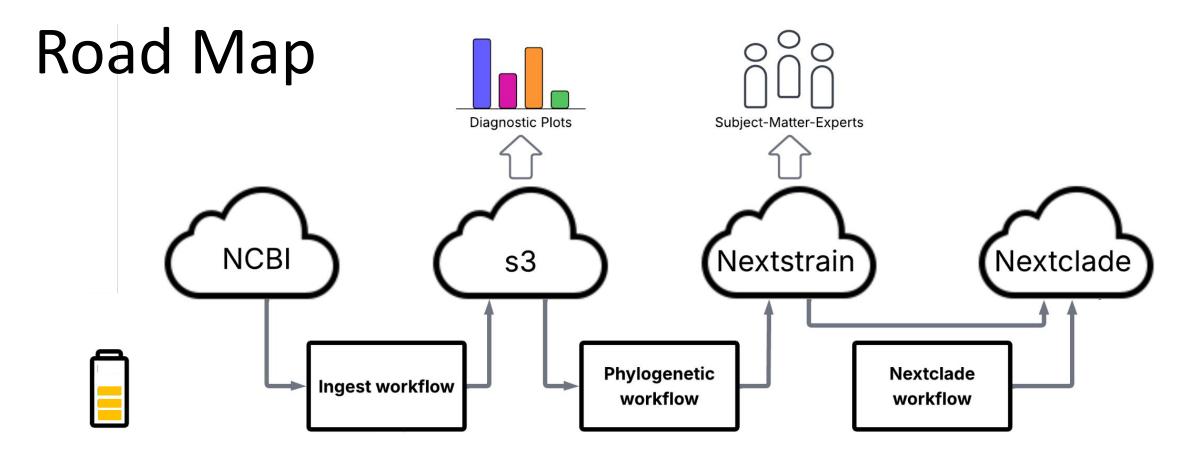
29

30

MN920156


MN920157


strain MuVs/British Columbia.CAN/16.17[G]


strain MuVs/Manitoba.CAN/16.17[G]

global

north-america

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank

global tree north-america tree add frequencies

maybe SH tree

- SME review again
- Push staging to live site
- It's time to start the Nextclade workflow

Literature review - collect papers

- What is the earliest study identifying Mumps as a viral disease?
 - (Johnson and Goodpasture, 1933) "An investigation of the etiology of Mumps"
- When was the Mumps virus first **sequenced**, and which genome region was published?
 - 1989 gene segments (F, HN, SH, ...) perhaps Takeuchi et al; full genome perhaps Mori
- When was the first Mumps vaccine developed, and how effective was it?
 - (Hillman et al, 1967) "Live Attenuated Mumps Virus Vaccine" Jeyrl-Lynn Strain
- Have there been major updates to the vaccine? What prompted them?
 - Yes, side effects or regional genotype (Urabe, Leningrad-3, Rubini, Miyahara)
- What **genotype** system has been used for Mumps virus strains?
 - (Jin et al, 2005; Jin et al, 2015; WHO 2012) tables of SH, HN, and full genome
- What are some of the key open questions in recent Mumps virus research?
 - CDC Mumps website; Moncla et al, 2021;

Nextclade Dataset

Table 1. The proposed reference strains and global distribution of mumps genotypes

Genotype	Reference strain	GB accession no	Country (IS03) and year identified
A	End/USA45* SBL-1/SWE69* JL/US63 (vaccine) Rubini (vaccine)	D90231 D00663 D90232 X72944	USA45, 50, 63; SWE69, 93; CHE74; DEU87, 92; CAN88
В	Urb/Jap67 Mat/Jap84 Miya (vaccine)* Hoshino (vaccine)	D90236 D90233 D90234 AB003414	JPN67-95: GBR89, 90
С	Bf/UK75* Bm1/UK90	X63709 DS26771.DAT	GBR75, 80s, 90, 98-2000; SWE80s, 92; DEU87, 92, 93; CHE95; PRT96; LTU98-00
D	Ge9/Gem77 Islip1/UK97	DS26771.DAT AF142766	DEU77; PRT96; GBR96, 97, 99; LTU99; DEN80s, 90s, 01; JPN93
E (C)	Ed2/UK88	X63711	GBR88
F	WLZ1/CNA95 WSH1/CNA96	Z77158 Z77160	CHN95; GBR 99; SWE71, 72, 84;
G	Glouc1/UK96* UK01-22	AF142764 AY380075	GBR91, 96-05; JPN99-05
Н	Be1/UK88 ManchS1/UK95*	DS26771DAT AF142771	GBR88, 95, 96, 98-01; CHE 95, 98-00; KOR99; JPN97
I	Odate-1 AA12/Korea97*	D86174 AF180374	JPN93; KOR97-01
J	MP94H/JNP94 Loug1/UK97	AB03417 AF142770	JPN94, GBR97
K	DK81/01 (DMK81)	AF365891	DNK81-88
L	Fukuoka49/JPN00* Tokyo S-III-10/JPN01*	AB105483 AB105480	JPN00-01
**	Leningrad 3 (vaccine) L-Zagreb (vaccine)	AY493374 AJ272363	RUS53
**	Tay/UK50s*	AF142774	GBR50s
**	UNK02-19*	AY380077	GBR02

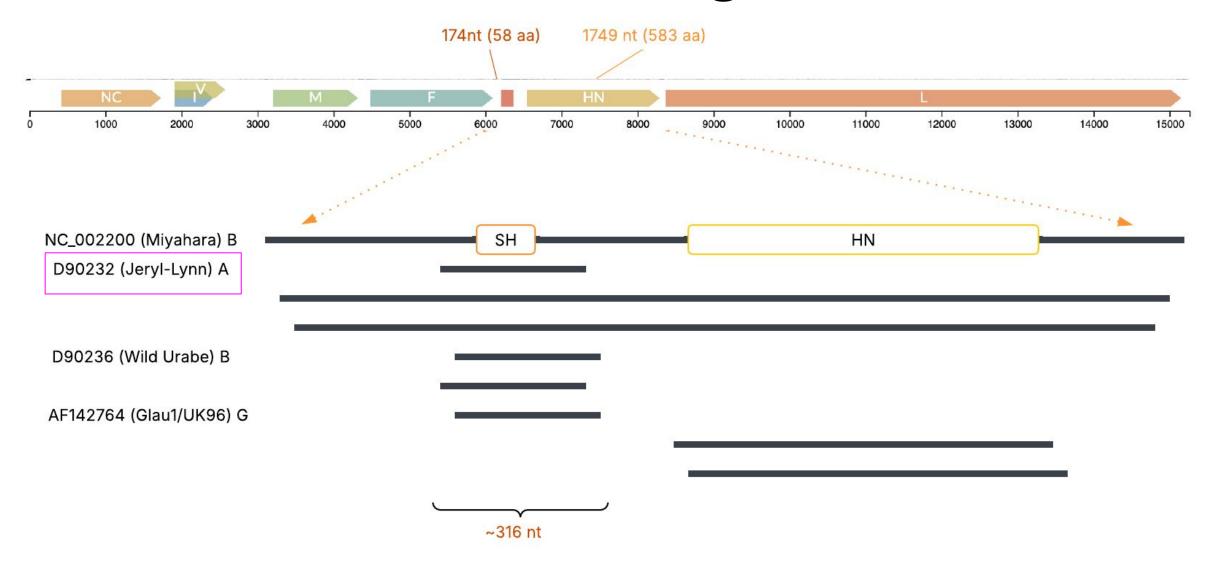
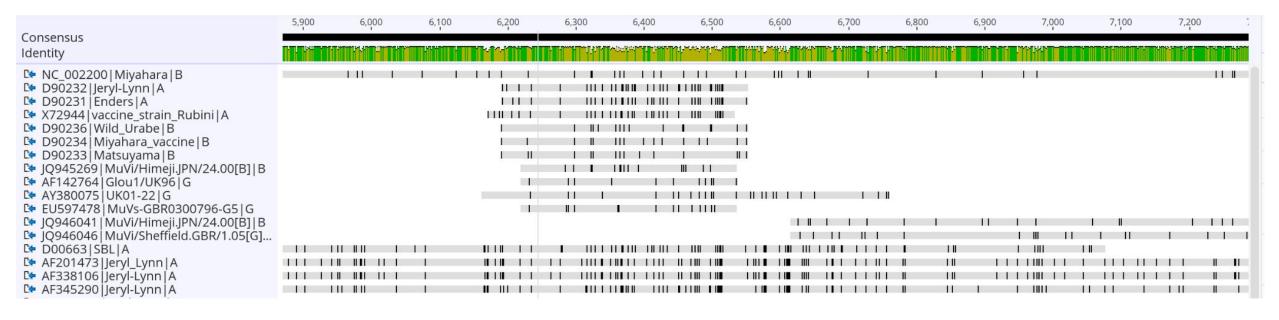
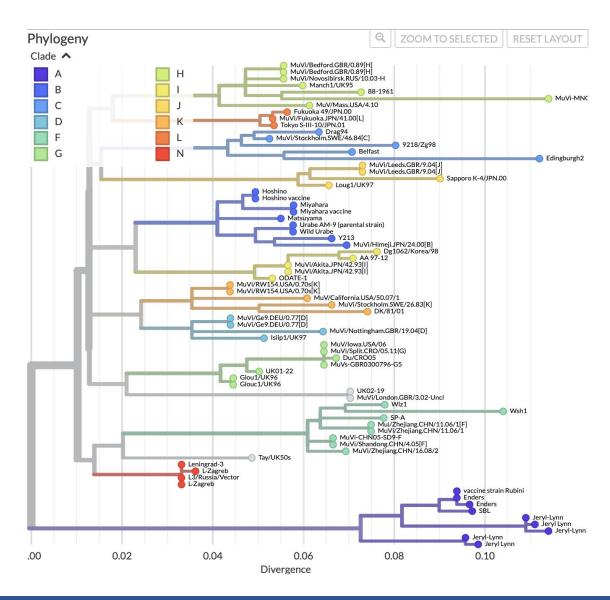

^{*}Isolate available; **Reference strains for potential new genotypes

Table 1. Mumps genotype reference strains and those with full genome sequence for analysis (73 sequences)


		GenBank accession number								
Genotype (no. seqs)	*Reference strain × no. of identical sequences	Full genome (identical sequences)	SH/HN of ref strain							
A (22)	*MuVi/Boston.USA/0.45[A]	GU980052								
	*MuVi/Pennsylvannia.USA/13.63[A] (VAC)x13	AF338106 (BD293023, EA500331-2,								
		AX081133, DI021804, DI064912,								
		AX081123, FJ211584-6,								
		BD293022, AF201473)								
	MuVi/JL2.USA/0.63(VAC)-Ax5	AF345290 (EA500333,BD293024,								
		DI035997, HQ416907)								
	MuVi/JL2.USA/0.63-Ax2	FN431985 (AX081134)								
	MuVi//JL5.S79/CHN-A	HQ416906								
B (14)	*MuVi/Urabe.JPN/0.67[B]x10	AB000388 (AB000386–7,	JQ945269/JQ946041							
		AF314558–62, FJ375177–8)								
	*MuVi/Himeji.JPN/24.00[B]	_								
	MuVi/Y213.JPN/0.0[B]	AB576764								
	MuVi/Miyahara.JPN/vac[B] x2	AB040874 (NC002200)								
	Muvi/Hoshino.JPN/vac[B]	Ab470486								
C (2)	*MuVi/Zagreb.HRV/39.98[C]	EU370206	JQ945268/JQ999999							
	*MuVi/Stockholm.SWE/46.84[C]	_								
	MuVi/Drag94.RUS/0.94[C]	AY669145								
D (1)	*MuVi/Ge9.DEU/0.77[D]	KF878076	JQ945275/JQ946039							
	*MuVi/Nottingham.GBR/19.04[D]	-	JQ034452/JQ034464							
F (7)	*MuVi/Shandong.CHN/4.05[F]	KF042304								
	*MuVi/Zhejiang.CHN/11.06/1[F]	KF170917								
	MuVi/SP-A.Yunnan.CHN/0.05-Fx3	FJ556896 (EU884413,								
		DQ649478)								
	MuVi/Zhejiang.CHN/16.08/2-F	KF170918								
	MuVi/Zhejiang.CHN/26.05-F	KF17091								
G (9)	*MuVi/Gloucester.GBR/32.96[G]	AF280799	EU597478/JQ946046							
	*MuVi/Sheffield.GBR/1.05[G]	_								
	MuVi/Split.CRO/05.11[G]x5	JN635498 (JX287387, JX287389–91)								
	MuVi/Iowa.USA/0.06-Gx2	JX287385 (JN012242)								
	MuVi/Du.CRO/0.05-G	EU370207								
H (5)	*MuVi/Bedford.GBR/0.89[H]	KF878077	JQ945273/JQ946035							
(-)	*MuVi/Ulaanbaatar.MNG/22.09[H]	AB600843	, 2:: -, , 2:							
	MuVi//1961.USA/0.88[H]	AF467767								
	MuVi/Mass.USA/4.10[H]	JX287388								
	MuVi/Novosibirsk.RUS/10.03[H]	AY681495								
I (3)	*MuVi/Akita.JPN/42.93[I]x2	KF878078 (AB600942)	JQ945274/JQ946037							
(0)	*MuVi/Dg1062.KOR/46.98[I]	AY309060	, , , , , , , , , , , , , , , , , , , ,							
J (1)	*MuVi/Leeds.GBR/9.04[J]	KF878079	JQ945271/JQ946033							
(-)	*MuVi/Sapporo.JPN/12.00[J]	_	AB105475/JQ946044							
K (2)	*MuVi/RW154.USA/0.70s[K]	KF878080	JQ945276/JQ946040							
(-)	*MuVi/Stockholm.SWE/26.83[K]	=	JQ945270/JQ946045							
	MuVi/California.USA/50.07/1-K	JX287386	, 2:: -, , 2:							
L (1)	*MuVi/Fukuoka.JPN/41.00[L]	KF878081	AB105483/JQ946036							
_ \-/	*MuVi/Tokyo.JPN/6.01[L]	_	AB105480/JQ946043							
N (5)	*MuVi/Vector.RUS/0.53[N] (VAC)x3	AY508995 (JF727651-2)								
(-)	*MuVi/L-Zagreb.HRV/0.71[N] (VAC)x2	AY685920 (AY685921)								
	MuVi/Taylor.GBR/0.50s	-	AF142774/JQ946042							
Unclassified			111 111 11 11 11 11 11 11 11 11 11 11 1							
Unclassified	MuVi/Tokyo.JPN/0.93	_	AB003415/AB003415							

^{*}Reference strains.

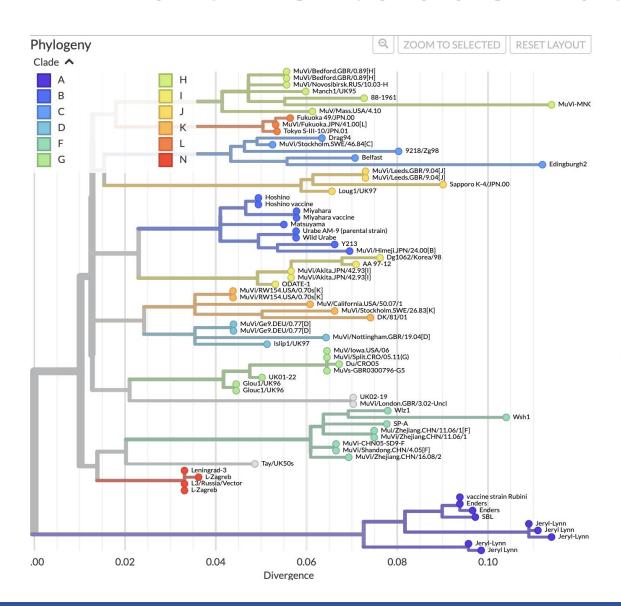

Pick a reference for SH region

Align the scaffold sequences

Draft Nextclade Dataset

Differences to the global tree

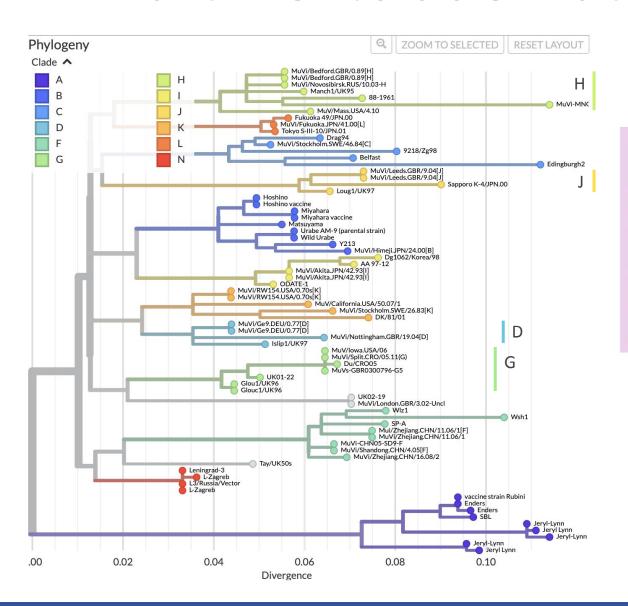
- Only SH region
- Mid point root
- Includes B and N genotype strains
- There are reference unknown/unclassified genotype strains
- Jeryl Lynn is a bit over represented


Nextclade Alignment parameters

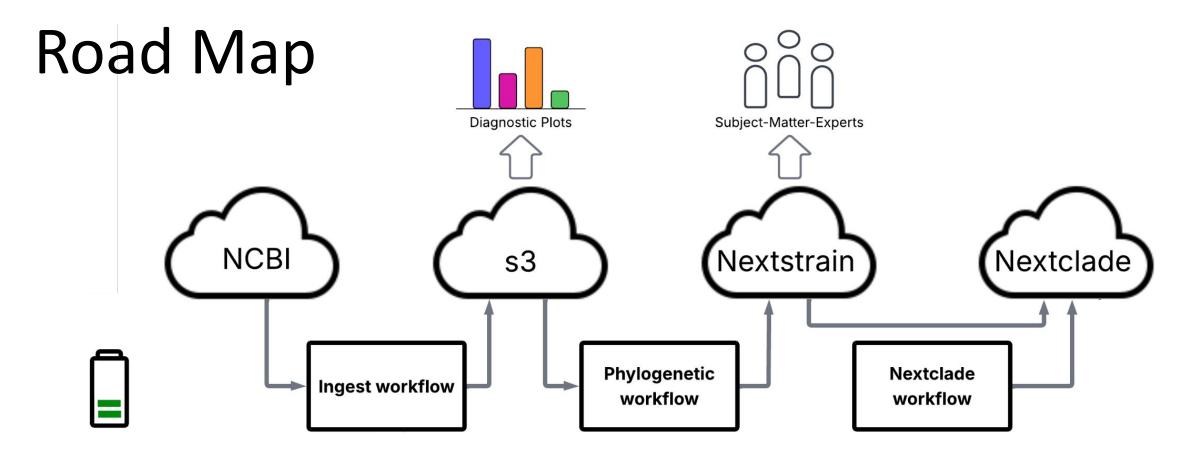
- Nextclade preset alignments (<u>short sequences</u>)
- Adjusting alignments so that a reference of 316 nt doesn't cause queries of 15,000 nt to fail (300/15000 nt =0.02)

```
"alignmentParams": {
           "minLength": 80,
           "penaltyGapExtend": 1,
           "penaltyGapOpen": 4,
           "penaltyGapOpenInFrame": 4,
           "penaltyGapOpenOutOfFrame": 6,
           "penaltyMismatch": 1,
           "scoreMatch": 4,
           "noTranslatePastStop": false,
10
           "excessBandwidth": 9,
11
12
           "terminalBandwidth": 80,
           "allowedMismatches": 12,
13
           "minMatchLength": 30,
14
           "maxAlignmentAttempts": 5,
15
           "includeReference": true,
16
17
           "includeNearestNodeInfo": true,
           "retryReverseComplement": true,
18
           "minSeedCover": 0.01
19
```

May 14, 2025 20 }, 46 / 56

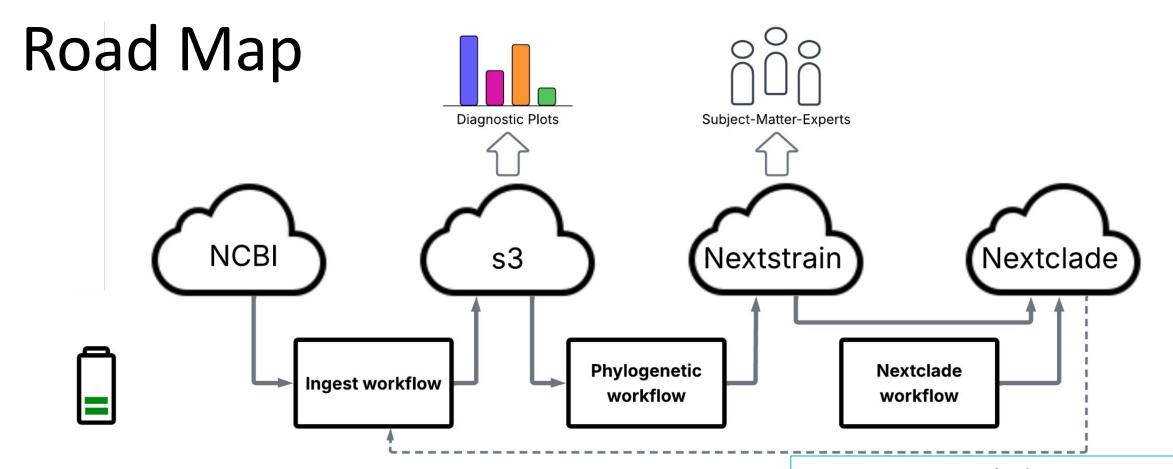

Draft Nextclade Dataset

																Company and Company
Count of accession	on	Column Labels	~		Dra	ft l	Mur	nps	Ne	xtc	la	de	da	ta	set re	esults
Row Labels		A	_	В	С	D	F	G	н	ı	J	K	L	N	(blank)	Grand Total
Α			9												44	53
В				35											16	51
С					213										29	242
D						101		3							86	190
D1						4										4
F							273								157	430
G						3		8791	1		1				2426	11222
G1								56								56
G2								179								179
Н									155	1					33	189
H1									9							9
H2									2							2
I										95					8	103
J											27				9	36
K												77			30	107
K/M												1				1
L													6		21	27
М												1			1	2
N														14	6	20
(blank)		-	16	64	76	42	198	545	102	33	69	53	2	6	419	1625
Grand Total			25	99	289	150	471	9574	269	129	97	132	8	20	3285	14548


May 14, 2025 Jennifer Chang 47 / 56

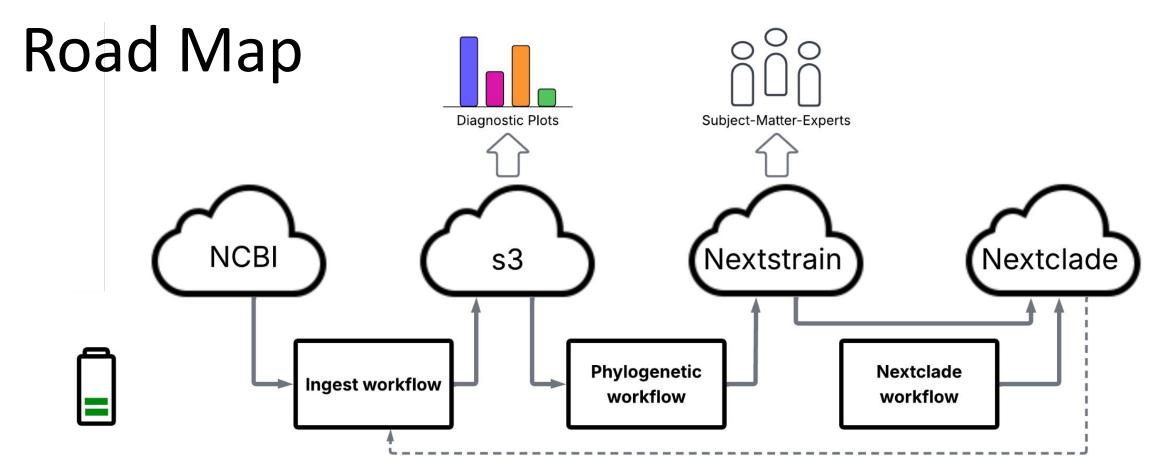
Draft Nextclade Dataset

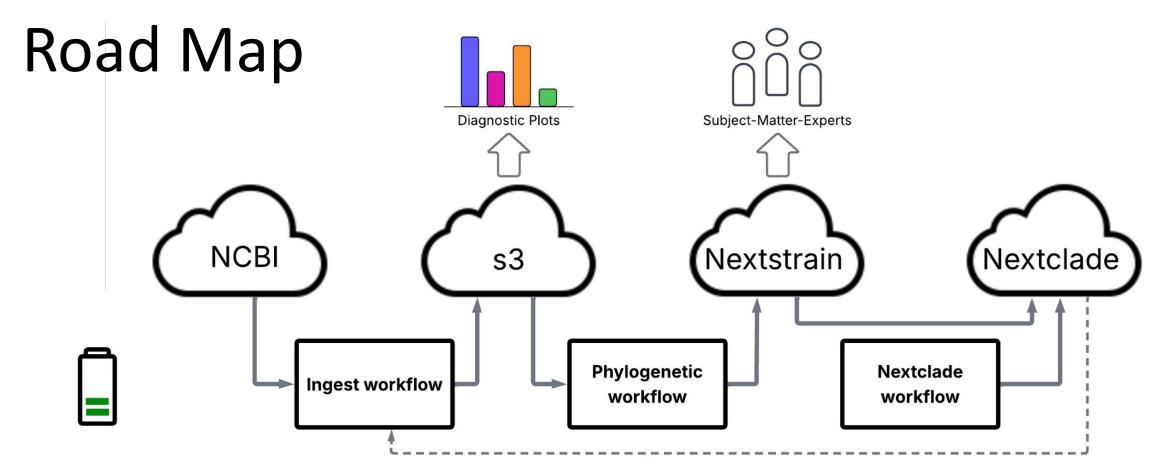
					Dra	ft N	1ur	nps	Ne	xtc	la	de d	da	ita	set r	esults
Count of accession	on •	Column Labels	_	В	С	D	F	G	н		J	К	L	N	(blank)	Grand Total
Α		1000	9	Seedill)					5.5	- E				2.5.	44	
В				35											16	51
С					213										29	242
D						101		3							86	190
D1						4										4
F							273						_		157	430
G						3		8791	1		1				2426	11222
G1								56					_			56
G2								179								179
Н									155	1					33	189
H1									9							9
H2									2							2
I										95					8	103
J											27				9	36
K												77			30	107
K/M												1				1
L													6		21	27
М												1			1	2
N														14	6	20
(blank)			16	64	76	42	198	545	102	33	69	53	2	6	419	1625
Grand Total			25	99	289	150	471	9574	269	129	97	132	8	20	3285	14548


May 14, 2025 Jennifer Chang 48 / 56

mumps NCBI Taxon ID: 2560602
parse genotype from Virus Taxon
parse division and genotype from strain
pull strain name -> parse genbank

global tree north-america tree add frequencies maybe SH tree

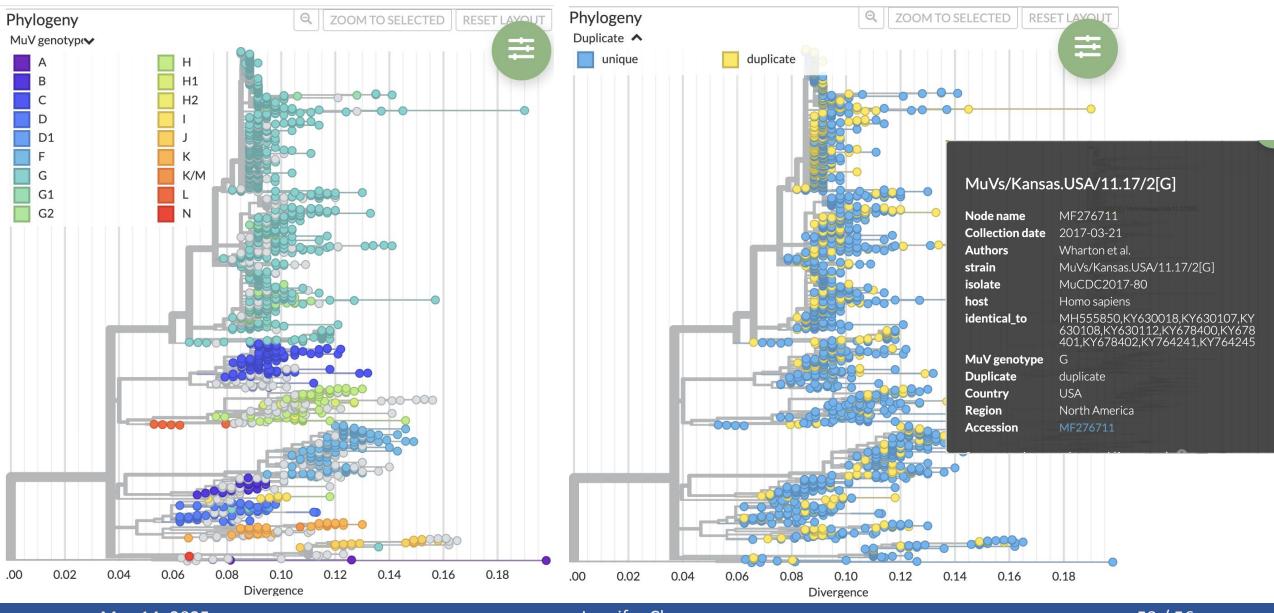

- Open Nextclade PR
- Connect to Ingest
- More diagnostic plots


mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank global tree north-america tree add frequencies

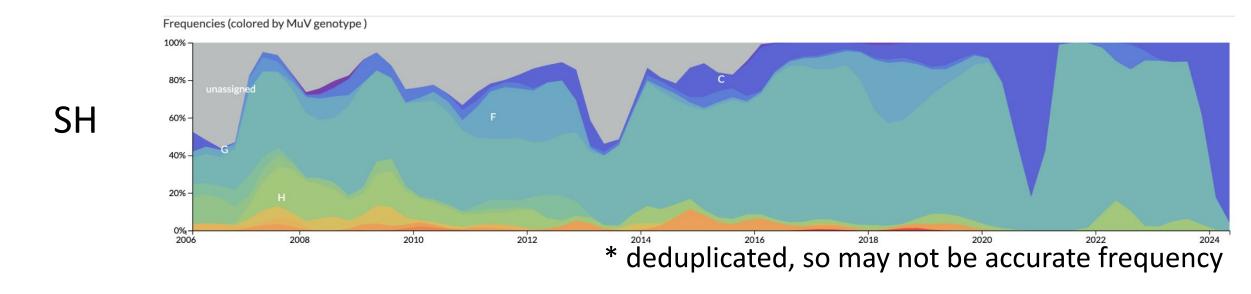
maybe SH tree

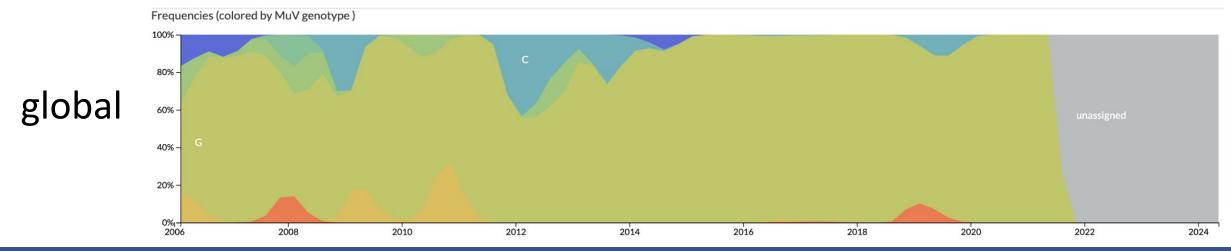
- Open Nextclade PR
- Connect to Ingest
- More diagnostic plots

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank global tree north-america tree add frequencies maybe SH tree Jin and WHO scaffold strains
Jeryl Lynn SH region reference
adjust nextclade parameters
maybe PR to Nextclade data

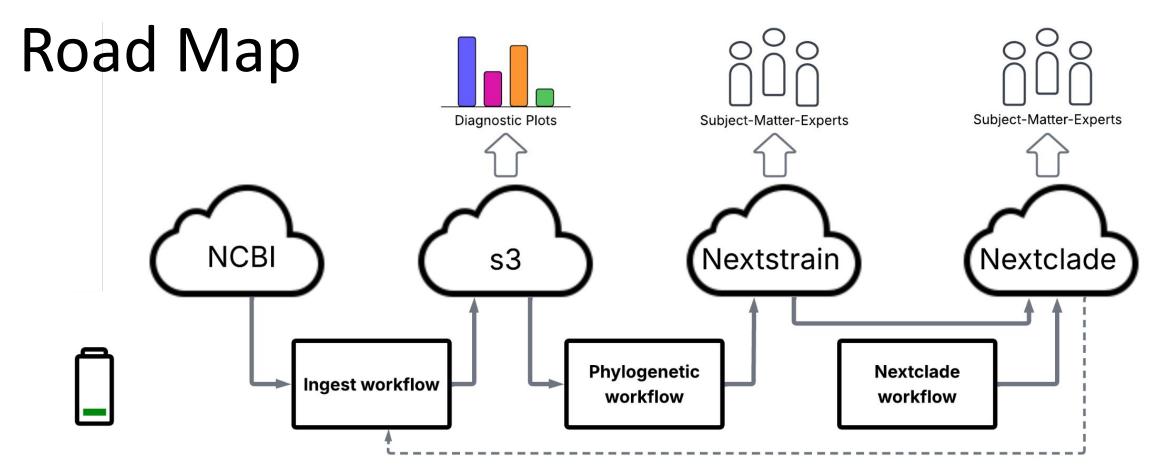


mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank global tree north-america tree add frequencies

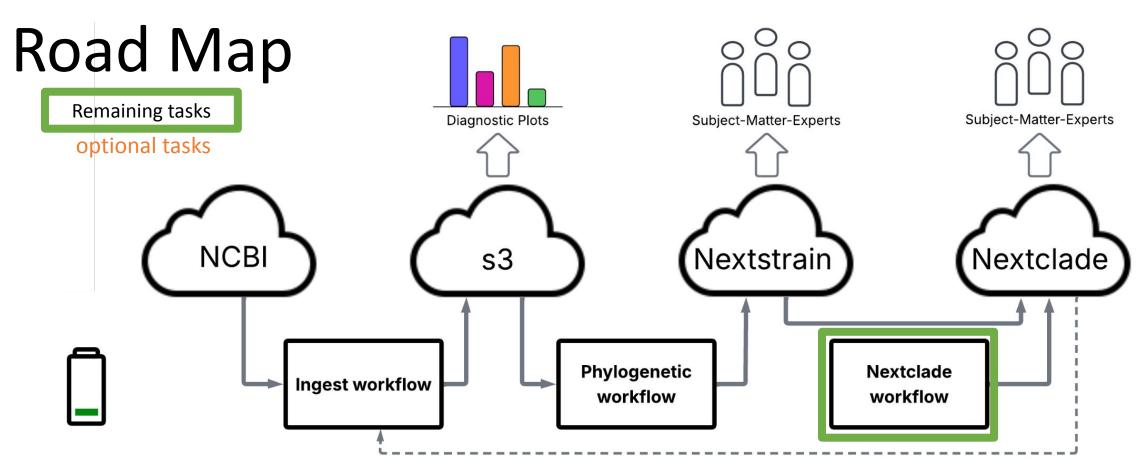

maybe SH tree


Jin and WHO scaffold strains
Jeryl Lynn SH region reference
adjust nextclade parameters
maybe PR to Nextclade data

SH Tree - merge identical samples



SH Tree - more recent data



May 14, 2025 Jennifer Chang 54 / 56

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank global tree north-america tree add frequencies maybe SH tree Jin and WHO scaffold strains
Jeryl Lynn SH region reference
adjust nextclade parameters
maybe PR to Nextclade data
maybe HN and full genome datasets

mumps NCBI Taxon ID: 2560602 parse genotype from Virus Taxon parse division and genotype from strain pull strain name -> parse genbank global tree north-america tree add frequencies maybe SH tree Jin and WHO scaffold strains
Jeryl Lynn SH region reference
adjust nextclade parameters
maybe PR to Nextclade data
write mumps blog post

HN or full genome Nextclade dataset

May 14, 2025 Jennifer Chang 56 / 56